{"title":"锂离子电池浸入式冷却的高效计算方法","authors":"Piyush Mani Tripathi, Amy Marconnet","doi":"10.1016/j.icheatmasstransfer.2025.108856","DOIUrl":null,"url":null,"abstract":"<div><div>Immersion-cooled battery thermal management systems (BTMSs) are generally designed and analyzed using numerical simulations. These models must couple the electrochemical and thermal–fluid physics for accurate results. However, such a numerical approach is computationally expensive and may not be feasible, particularly for large systems. Here, we develop a computationally efficient approach to study immersion cooling-based BTMSs with the coupled physics. After validating the simplified immersion-cooled battery model for fixed convection coefficient, we then define two simplified immersion cooling models: one using existing heat transfer correlations and the other employing customized correlations trained from fully-coupled numerical models. The trained models are highly accurate (error <span><math><mo>≤</mo></math></span>3%). Moreover, they are very flexible as they can be formulated to study different combinations of mass flow rates, fluids, and discharge rates using a single heat transfer correlation. Additionally, the trained models are data-frugal, requiring only data from two mass flow rates (for a given fluid and discharge rate) to predict the response for other mass flow rates. The significant reduction in computation cost [from hours or days for the fully-coupled numerical models to seconds for proposed models] makes the proposed approach more suitable for rapid analysis, optimization, and real-time implementation of the immersion-cooled BTMSs.</div></div>","PeriodicalId":332,"journal":{"name":"International Communications in Heat and Mass Transfer","volume":"164 ","pages":"Article 108856"},"PeriodicalIF":6.4000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A computationally efficient approach for immersion cooling of a Li-Ion battery cell\",\"authors\":\"Piyush Mani Tripathi, Amy Marconnet\",\"doi\":\"10.1016/j.icheatmasstransfer.2025.108856\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Immersion-cooled battery thermal management systems (BTMSs) are generally designed and analyzed using numerical simulations. These models must couple the electrochemical and thermal–fluid physics for accurate results. However, such a numerical approach is computationally expensive and may not be feasible, particularly for large systems. Here, we develop a computationally efficient approach to study immersion cooling-based BTMSs with the coupled physics. After validating the simplified immersion-cooled battery model for fixed convection coefficient, we then define two simplified immersion cooling models: one using existing heat transfer correlations and the other employing customized correlations trained from fully-coupled numerical models. The trained models are highly accurate (error <span><math><mo>≤</mo></math></span>3%). Moreover, they are very flexible as they can be formulated to study different combinations of mass flow rates, fluids, and discharge rates using a single heat transfer correlation. Additionally, the trained models are data-frugal, requiring only data from two mass flow rates (for a given fluid and discharge rate) to predict the response for other mass flow rates. The significant reduction in computation cost [from hours or days for the fully-coupled numerical models to seconds for proposed models] makes the proposed approach more suitable for rapid analysis, optimization, and real-time implementation of the immersion-cooled BTMSs.</div></div>\",\"PeriodicalId\":332,\"journal\":{\"name\":\"International Communications in Heat and Mass Transfer\",\"volume\":\"164 \",\"pages\":\"Article 108856\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Communications in Heat and Mass Transfer\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0735193325002817\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Communications in Heat and Mass Transfer","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0735193325002817","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
A computationally efficient approach for immersion cooling of a Li-Ion battery cell
Immersion-cooled battery thermal management systems (BTMSs) are generally designed and analyzed using numerical simulations. These models must couple the electrochemical and thermal–fluid physics for accurate results. However, such a numerical approach is computationally expensive and may not be feasible, particularly for large systems. Here, we develop a computationally efficient approach to study immersion cooling-based BTMSs with the coupled physics. After validating the simplified immersion-cooled battery model for fixed convection coefficient, we then define two simplified immersion cooling models: one using existing heat transfer correlations and the other employing customized correlations trained from fully-coupled numerical models. The trained models are highly accurate (error 3%). Moreover, they are very flexible as they can be formulated to study different combinations of mass flow rates, fluids, and discharge rates using a single heat transfer correlation. Additionally, the trained models are data-frugal, requiring only data from two mass flow rates (for a given fluid and discharge rate) to predict the response for other mass flow rates. The significant reduction in computation cost [from hours or days for the fully-coupled numerical models to seconds for proposed models] makes the proposed approach more suitable for rapid analysis, optimization, and real-time implementation of the immersion-cooled BTMSs.
期刊介绍:
International Communications in Heat and Mass Transfer serves as a world forum for the rapid dissemination of new ideas, new measurement techniques, preliminary findings of ongoing investigations, discussions, and criticisms in the field of heat and mass transfer. Two types of manuscript will be considered for publication: communications (short reports of new work or discussions of work which has already been published) and summaries (abstracts of reports, theses or manuscripts which are too long for publication in full). Together with its companion publication, International Journal of Heat and Mass Transfer, with which it shares the same Board of Editors, this journal is read by research workers and engineers throughout the world.