Dineo M. Mailula , Brenda D. Wingfield , Magrieta A. van der Nest , Almuth Hammerbacher
{"title":"角藻科病原菌生产杂醇醇和杂醇酸酯","authors":"Dineo M. Mailula , Brenda D. Wingfield , Magrieta A. van der Nest , Almuth Hammerbacher","doi":"10.1016/j.funeco.2025.101427","DOIUrl":null,"url":null,"abstract":"<div><div>The family Ceratocystidaceae includes economically important plant pathogens that vary in host preference and lifestyle. These fungi are believed to attract insect vectors, for their dispersal through their floral and fruity scents. This study aimed to identify the volatiles produced by a subset of fungi within the Ceratocystidaceae using gas chromatography coupled with mass spectrometry. The primary volatiles produced by most genera in the family were fusel alcohols and fusel acetates, but their emission rates differed significantly between genera and isolates from a single species. <em>Ceratocystis albifundus</em> collected from <em>Protea cynaroides</em> produced higher levels of fusel acetates compared to isolates from <em>Terminalia sericea</em>. In addition, significant differences in volatile biosynthesis were observed between isolates grown under different temperatures. Results of this study demonstrate that Ceratocystidaceae exhibit varied volatile profiles, but further research is needed to understand the ecological and physiological mechanisms underlying this plasticity.</div></div>","PeriodicalId":55136,"journal":{"name":"Fungal Ecology","volume":"76 ","pages":"Article 101427"},"PeriodicalIF":1.9000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Production of fusel alcohols and fusel acetates by pathogenic fungi in the Ceratocystidaceae\",\"authors\":\"Dineo M. Mailula , Brenda D. Wingfield , Magrieta A. van der Nest , Almuth Hammerbacher\",\"doi\":\"10.1016/j.funeco.2025.101427\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The family Ceratocystidaceae includes economically important plant pathogens that vary in host preference and lifestyle. These fungi are believed to attract insect vectors, for their dispersal through their floral and fruity scents. This study aimed to identify the volatiles produced by a subset of fungi within the Ceratocystidaceae using gas chromatography coupled with mass spectrometry. The primary volatiles produced by most genera in the family were fusel alcohols and fusel acetates, but their emission rates differed significantly between genera and isolates from a single species. <em>Ceratocystis albifundus</em> collected from <em>Protea cynaroides</em> produced higher levels of fusel acetates compared to isolates from <em>Terminalia sericea</em>. In addition, significant differences in volatile biosynthesis were observed between isolates grown under different temperatures. Results of this study demonstrate that Ceratocystidaceae exhibit varied volatile profiles, but further research is needed to understand the ecological and physiological mechanisms underlying this plasticity.</div></div>\",\"PeriodicalId\":55136,\"journal\":{\"name\":\"Fungal Ecology\",\"volume\":\"76 \",\"pages\":\"Article 101427\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fungal Ecology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1754504825000170\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fungal Ecology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1754504825000170","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
Production of fusel alcohols and fusel acetates by pathogenic fungi in the Ceratocystidaceae
The family Ceratocystidaceae includes economically important plant pathogens that vary in host preference and lifestyle. These fungi are believed to attract insect vectors, for their dispersal through their floral and fruity scents. This study aimed to identify the volatiles produced by a subset of fungi within the Ceratocystidaceae using gas chromatography coupled with mass spectrometry. The primary volatiles produced by most genera in the family were fusel alcohols and fusel acetates, but their emission rates differed significantly between genera and isolates from a single species. Ceratocystis albifundus collected from Protea cynaroides produced higher levels of fusel acetates compared to isolates from Terminalia sericea. In addition, significant differences in volatile biosynthesis were observed between isolates grown under different temperatures. Results of this study demonstrate that Ceratocystidaceae exhibit varied volatile profiles, but further research is needed to understand the ecological and physiological mechanisms underlying this plasticity.
期刊介绍:
Fungal Ecology publishes investigations into all aspects of fungal ecology, including the following (not exclusive): population dynamics; adaptation; evolution; role in ecosystem functioning, nutrient cycling, decomposition, carbon allocation; ecophysiology; intra- and inter-specific mycelial interactions, fungus-plant (pathogens, mycorrhizas, lichens, endophytes), fungus-invertebrate and fungus-microbe interaction; genomics and (evolutionary) genetics; conservation and biodiversity; remote sensing; bioremediation and biodegradation; quantitative and computational aspects - modelling, indicators, complexity, informatics. The usual prerequisites for publication will be originality, clarity, and significance as relevant to a better understanding of the ecology of fungi.