八元小波变换与测不准原理

IF 3.4 2区 数学 Q1 MATHEMATICS, APPLIED
Guangbin Ren, Xin Zhao
{"title":"八元小波变换与测不准原理","authors":"Guangbin Ren,&nbsp;Xin Zhao","doi":"10.1016/j.amc.2025.129449","DOIUrl":null,"url":null,"abstract":"<div><div>This article centers around the octonion wavelet transform, exploring its transformation function <span><math><msup><mrow><mi>ψ</mi></mrow><mrow><mi>a</mi><mo>,</mo><mi>b</mi><mo>,</mo><mi>S</mi></mrow></msup><mo>(</mo><mi>x</mi><mo>)</mo></math></span> derived from the admissible octonionic mother wavelet <em>ψ</em>, incorporating translation, rotation, and dilation components. We establish the inverse transform and the Plancherel formula, unveiling the inner product relationship of transformed functions. The Uncertainty Principle for the octonion wavelet transform reveals inherent bounds in wavelet analysis within the octonionic framework. However, it is essential to note that these discoveries are specific to the alternative properties of octonions and cannot be extended to general Cayley-Dickson algebras, where the sedenion wavelet transform lacks the isometry property observed in the octonionic setting.</div></div>","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":"500 ","pages":"Article 129449"},"PeriodicalIF":3.4000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Octonionic wavelet transform and uncertainly principle\",\"authors\":\"Guangbin Ren,&nbsp;Xin Zhao\",\"doi\":\"10.1016/j.amc.2025.129449\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This article centers around the octonion wavelet transform, exploring its transformation function <span><math><msup><mrow><mi>ψ</mi></mrow><mrow><mi>a</mi><mo>,</mo><mi>b</mi><mo>,</mo><mi>S</mi></mrow></msup><mo>(</mo><mi>x</mi><mo>)</mo></math></span> derived from the admissible octonionic mother wavelet <em>ψ</em>, incorporating translation, rotation, and dilation components. We establish the inverse transform and the Plancherel formula, unveiling the inner product relationship of transformed functions. The Uncertainty Principle for the octonion wavelet transform reveals inherent bounds in wavelet analysis within the octonionic framework. However, it is essential to note that these discoveries are specific to the alternative properties of octonions and cannot be extended to general Cayley-Dickson algebras, where the sedenion wavelet transform lacks the isometry property observed in the octonionic setting.</div></div>\",\"PeriodicalId\":55496,\"journal\":{\"name\":\"Applied Mathematics and Computation\",\"volume\":\"500 \",\"pages\":\"Article 129449\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics and Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0096300325001766\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300325001766","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文以八元子小波变换为中心,探讨其变换函数ψa,b,S(x)是由可容许的八元子母小波ψ导出的,包含平移,旋转和膨胀分量。建立了函数的逆变换和Plancherel公式,揭示了变换后函数的内积关系。八元子小波变换的测不准原理揭示了在八元子框架下小波分析的固有界限。然而,必须注意的是,这些发现是针对八元数的可选性质的,不能推广到一般的Cayley-Dickson代数,其中sedenion小波变换缺乏在八元数设置中观察到的等距性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Octonionic wavelet transform and uncertainly principle
This article centers around the octonion wavelet transform, exploring its transformation function ψa,b,S(x) derived from the admissible octonionic mother wavelet ψ, incorporating translation, rotation, and dilation components. We establish the inverse transform and the Plancherel formula, unveiling the inner product relationship of transformed functions. The Uncertainty Principle for the octonion wavelet transform reveals inherent bounds in wavelet analysis within the octonionic framework. However, it is essential to note that these discoveries are specific to the alternative properties of octonions and cannot be extended to general Cayley-Dickson algebras, where the sedenion wavelet transform lacks the isometry property observed in the octonionic setting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.90
自引率
10.00%
发文量
755
审稿时长
36 days
期刊介绍: Applied Mathematics and Computation addresses work at the interface between applied mathematics, numerical computation, and applications of systems – oriented ideas to the physical, biological, social, and behavioral sciences, and emphasizes papers of a computational nature focusing on new algorithms, their analysis and numerical results. In addition to presenting research papers, Applied Mathematics and Computation publishes review articles and single–topics issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信