Jingyu Tan , Wenke Zhang , Tingting Nong , Zhichao Zhang , Tao Wang , Yi Ma , Eric Wai Ming Lee , Meng Shi
{"title":"基于核力理论的改进社会力模型,模拟不同能见度条件下的建筑物疏散","authors":"Jingyu Tan , Wenke Zhang , Tingting Nong , Zhichao Zhang , Tao Wang , Yi Ma , Eric Wai Ming Lee , Meng Shi","doi":"10.1016/j.simpat.2025.103117","DOIUrl":null,"url":null,"abstract":"<div><div>Accurately simulating pedestrian behaviour under different visibility conditions is crucial for reducing casualties during emergency fire evacuations. Current research employing social force models typically simulates pedestrian behaviour based on interaction forces under specific visibility conditions. However, these studies often inadequately capture the dynamic effects of visibility changes on pedestrian interaction forces. Based on the nucleus force theory, this study developed an improved social force model (NSFM), incorporating environmental visibility parameters, establishing corresponding pedestrian movement rules. Additionally, we investigated the interaction between pedestrians and walls to determine the optimal parameters. The model’s accuracy was then validated by comparing its simulations under specific visibility conditions from previous visibility-based evacuation experiments and results from other models. Furthermore, we conducted simulations under different visibility conditions, the results show that reduced visibility intensifies wall-following behaviour and herd effects, leading to more detour behaviour, slower movement velocity, and longer evacuation times. As visibility increases, the impact on evacuation gradually diminishes. Finally, we investigated the impact of the number and location of exits and discovered that increasing the number substantially reduces evacuation time, while changes in exit locations can notably affect evacuation efficiency. The numerical simulation results demonstrate that the NSFM has significant potential for simulating pedestrian evacuation behaviour and processes under different visibility conditions, providing a scientific basis for designing more effective evacuation strategies in the future.</div></div>","PeriodicalId":49518,"journal":{"name":"Simulation Modelling Practice and Theory","volume":"142 ","pages":"Article 103117"},"PeriodicalIF":3.5000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An improved social force model based on nucleus force theory to simulate building evacuation in different visibility conditions\",\"authors\":\"Jingyu Tan , Wenke Zhang , Tingting Nong , Zhichao Zhang , Tao Wang , Yi Ma , Eric Wai Ming Lee , Meng Shi\",\"doi\":\"10.1016/j.simpat.2025.103117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Accurately simulating pedestrian behaviour under different visibility conditions is crucial for reducing casualties during emergency fire evacuations. Current research employing social force models typically simulates pedestrian behaviour based on interaction forces under specific visibility conditions. However, these studies often inadequately capture the dynamic effects of visibility changes on pedestrian interaction forces. Based on the nucleus force theory, this study developed an improved social force model (NSFM), incorporating environmental visibility parameters, establishing corresponding pedestrian movement rules. Additionally, we investigated the interaction between pedestrians and walls to determine the optimal parameters. The model’s accuracy was then validated by comparing its simulations under specific visibility conditions from previous visibility-based evacuation experiments and results from other models. Furthermore, we conducted simulations under different visibility conditions, the results show that reduced visibility intensifies wall-following behaviour and herd effects, leading to more detour behaviour, slower movement velocity, and longer evacuation times. As visibility increases, the impact on evacuation gradually diminishes. Finally, we investigated the impact of the number and location of exits and discovered that increasing the number substantially reduces evacuation time, while changes in exit locations can notably affect evacuation efficiency. The numerical simulation results demonstrate that the NSFM has significant potential for simulating pedestrian evacuation behaviour and processes under different visibility conditions, providing a scientific basis for designing more effective evacuation strategies in the future.</div></div>\",\"PeriodicalId\":49518,\"journal\":{\"name\":\"Simulation Modelling Practice and Theory\",\"volume\":\"142 \",\"pages\":\"Article 103117\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Simulation Modelling Practice and Theory\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1569190X25000528\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Simulation Modelling Practice and Theory","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569190X25000528","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
An improved social force model based on nucleus force theory to simulate building evacuation in different visibility conditions
Accurately simulating pedestrian behaviour under different visibility conditions is crucial for reducing casualties during emergency fire evacuations. Current research employing social force models typically simulates pedestrian behaviour based on interaction forces under specific visibility conditions. However, these studies often inadequately capture the dynamic effects of visibility changes on pedestrian interaction forces. Based on the nucleus force theory, this study developed an improved social force model (NSFM), incorporating environmental visibility parameters, establishing corresponding pedestrian movement rules. Additionally, we investigated the interaction between pedestrians and walls to determine the optimal parameters. The model’s accuracy was then validated by comparing its simulations under specific visibility conditions from previous visibility-based evacuation experiments and results from other models. Furthermore, we conducted simulations under different visibility conditions, the results show that reduced visibility intensifies wall-following behaviour and herd effects, leading to more detour behaviour, slower movement velocity, and longer evacuation times. As visibility increases, the impact on evacuation gradually diminishes. Finally, we investigated the impact of the number and location of exits and discovered that increasing the number substantially reduces evacuation time, while changes in exit locations can notably affect evacuation efficiency. The numerical simulation results demonstrate that the NSFM has significant potential for simulating pedestrian evacuation behaviour and processes under different visibility conditions, providing a scientific basis for designing more effective evacuation strategies in the future.
期刊介绍:
The journal Simulation Modelling Practice and Theory provides a forum for original, high-quality papers dealing with any aspect of systems simulation and modelling.
The journal aims at being a reference and a powerful tool to all those professionally active and/or interested in the methods and applications of simulation. Submitted papers will be peer reviewed and must significantly contribute to modelling and simulation in general or use modelling and simulation in application areas.
Paper submission is solicited on:
• theoretical aspects of modelling and simulation including formal modelling, model-checking, random number generators, sensitivity analysis, variance reduction techniques, experimental design, meta-modelling, methods and algorithms for validation and verification, selection and comparison procedures etc.;
• methodology and application of modelling and simulation in any area, including computer systems, networks, real-time and embedded systems, mobile and intelligent agents, manufacturing and transportation systems, management, engineering, biomedical engineering, economics, ecology and environment, education, transaction handling, etc.;
• simulation languages and environments including those, specific to distributed computing, grid computing, high performance computers or computer networks, etc.;
• distributed and real-time simulation, simulation interoperability;
• tools for high performance computing simulation, including dedicated architectures and parallel computing.