{"title":"紧算子的熵及其在Landau-Pollak-Slepian理论和Sobolev空间中的应用","authors":"Thomas Allard, Helmut Bölcskei","doi":"10.1016/j.acha.2025.101762","DOIUrl":null,"url":null,"abstract":"<div><div>We derive a precise general relation between the entropy of a compact operator and its eigenvalues. It is then shown how this result along with the underlying philosophy can be applied to improve substantially on the best known characterizations of the entropy of the Landau-Pollak-Slepian operator and the metric entropy of unit balls in Sobolev spaces.</div></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"77 ","pages":"Article 101762"},"PeriodicalIF":2.6000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Entropy of compact operators with applications to Landau-Pollak-Slepian theory and Sobolev spaces\",\"authors\":\"Thomas Allard, Helmut Bölcskei\",\"doi\":\"10.1016/j.acha.2025.101762\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We derive a precise general relation between the entropy of a compact operator and its eigenvalues. It is then shown how this result along with the underlying philosophy can be applied to improve substantially on the best known characterizations of the entropy of the Landau-Pollak-Slepian operator and the metric entropy of unit balls in Sobolev spaces.</div></div>\",\"PeriodicalId\":55504,\"journal\":{\"name\":\"Applied and Computational Harmonic Analysis\",\"volume\":\"77 \",\"pages\":\"Article 101762\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied and Computational Harmonic Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1063520325000168\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Harmonic Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1063520325000168","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Entropy of compact operators with applications to Landau-Pollak-Slepian theory and Sobolev spaces
We derive a precise general relation between the entropy of a compact operator and its eigenvalues. It is then shown how this result along with the underlying philosophy can be applied to improve substantially on the best known characterizations of the entropy of the Landau-Pollak-Slepian operator and the metric entropy of unit balls in Sobolev spaces.
期刊介绍:
Applied and Computational Harmonic Analysis (ACHA) is an interdisciplinary journal that publishes high-quality papers in all areas of mathematical sciences related to the applied and computational aspects of harmonic analysis, with special emphasis on innovative theoretical development, methods, and algorithms, for information processing, manipulation, understanding, and so forth. The objectives of the journal are to chronicle the important publications in the rapidly growing field of data representation and analysis, to stimulate research in relevant interdisciplinary areas, and to provide a common link among mathematical, physical, and life scientists, as well as engineers.