考虑自动驾驶车辆眼动追踪方法的有效物联网接口

IF 6 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Junghoon Park
{"title":"考虑自动驾驶车辆眼动追踪方法的有效物联网接口","authors":"Junghoon Park","doi":"10.1016/j.iot.2025.101583","DOIUrl":null,"url":null,"abstract":"<div><div>The number of Internet-connected devices is steadily increasing, exceeding 25 billion globally and projected to surpass 50 billion about 6.5 times the world population. At the core of IoT is data collection via sensors, forming big data for AI-driven analysis, optimization, and visualization. A convenient control environment is essential for devices like autonomous vehicles, requiring new interfaces such as touchless eye movement. This research proposes a real-time eye-tracking method using a single web camera, easily installed in cars and integrated with IoT. The system detects gaze by recognizing iris shape, enabling software-only tracking without extra hardware. Experiments show a mean absolute error (MAE) of 3.49°, ensuring accuracy even with head movement. Unlike existing infrared (IR) LED or head-mounted methods, this approach offers a cost-effective, real-time solution. Using lightweight image processing instead of deep learning, the system achieves real-time tracking with low latency, making it ideal for low-power IoT and autonomous vehicles. It is expected to become a next-generation input interface for these applications.</div></div>","PeriodicalId":29968,"journal":{"name":"Internet of Things","volume":"31 ","pages":"Article 101583"},"PeriodicalIF":6.0000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An effective IoT interface considering an eye-tracking method for autonomous vehicle\",\"authors\":\"Junghoon Park\",\"doi\":\"10.1016/j.iot.2025.101583\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The number of Internet-connected devices is steadily increasing, exceeding 25 billion globally and projected to surpass 50 billion about 6.5 times the world population. At the core of IoT is data collection via sensors, forming big data for AI-driven analysis, optimization, and visualization. A convenient control environment is essential for devices like autonomous vehicles, requiring new interfaces such as touchless eye movement. This research proposes a real-time eye-tracking method using a single web camera, easily installed in cars and integrated with IoT. The system detects gaze by recognizing iris shape, enabling software-only tracking without extra hardware. Experiments show a mean absolute error (MAE) of 3.49°, ensuring accuracy even with head movement. Unlike existing infrared (IR) LED or head-mounted methods, this approach offers a cost-effective, real-time solution. Using lightweight image processing instead of deep learning, the system achieves real-time tracking with low latency, making it ideal for low-power IoT and autonomous vehicles. It is expected to become a next-generation input interface for these applications.</div></div>\",\"PeriodicalId\":29968,\"journal\":{\"name\":\"Internet of Things\",\"volume\":\"31 \",\"pages\":\"Article 101583\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Internet of Things\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2542660525000964\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet of Things","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542660525000964","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

互联网连接设备的数量正在稳步增长,全球已超过250亿,预计将超过500亿,约为世界人口的6.5倍。物联网的核心是通过传感器收集数据,形成大数据,用于人工智能驱动的分析、优化和可视化。方便的控制环境对自动驾驶汽车等设备至关重要,需要新的接口,如非接触式眼动。本研究提出了一种使用单个网络摄像头的实时眼动追踪方法,该摄像头易于安装在汽车中并与物联网集成。该系统通过识别虹膜形状来检测凝视,无需额外硬件即可实现仅软件跟踪。实验表明,平均绝对误差(MAE)为3.49°,即使头部运动也能保证精度。与现有的红外(IR) LED或头戴式方法不同,这种方法提供了一种经济高效的实时解决方案。该系统使用轻量级图像处理而不是深度学习,实现了低延迟的实时跟踪,是低功耗物联网和自动驾驶汽车的理想选择。它有望成为这些应用的下一代输入接口。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An effective IoT interface considering an eye-tracking method for autonomous vehicle
The number of Internet-connected devices is steadily increasing, exceeding 25 billion globally and projected to surpass 50 billion about 6.5 times the world population. At the core of IoT is data collection via sensors, forming big data for AI-driven analysis, optimization, and visualization. A convenient control environment is essential for devices like autonomous vehicles, requiring new interfaces such as touchless eye movement. This research proposes a real-time eye-tracking method using a single web camera, easily installed in cars and integrated with IoT. The system detects gaze by recognizing iris shape, enabling software-only tracking without extra hardware. Experiments show a mean absolute error (MAE) of 3.49°, ensuring accuracy even with head movement. Unlike existing infrared (IR) LED or head-mounted methods, this approach offers a cost-effective, real-time solution. Using lightweight image processing instead of deep learning, the system achieves real-time tracking with low latency, making it ideal for low-power IoT and autonomous vehicles. It is expected to become a next-generation input interface for these applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Internet of Things
Internet of Things Multiple-
CiteScore
3.60
自引率
5.10%
发文量
115
审稿时长
37 days
期刊介绍: Internet of Things; Engineering Cyber Physical Human Systems is a comprehensive journal encouraging cross collaboration between researchers, engineers and practitioners in the field of IoT & Cyber Physical Human Systems. The journal offers a unique platform to exchange scientific information on the entire breadth of technology, science, and societal applications of the IoT. The journal will place a high priority on timely publication, and provide a home for high quality. Furthermore, IOT is interested in publishing topical Special Issues on any aspect of IOT.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信