Yifan Jing , Ying Bai , Chao Liang , Yafeng Liu , Jiawei Zhou , Jianqiang Guo , Xiaolong Cai , Xiaofei Hu , Yujing Fang , Xuansheng Ding , Jing Wu , Dong Hu
{"title":"Ingenol通过靶向PTGS2/PI3K/AKT信号轴改善矽肺:治疗干预的意义","authors":"Yifan Jing , Ying Bai , Chao Liang , Yafeng Liu , Jiawei Zhou , Jianqiang Guo , Xiaolong Cai , Xiaofei Hu , Yujing Fang , Xuansheng Ding , Jing Wu , Dong Hu","doi":"10.1016/j.cellsig.2025.111780","DOIUrl":null,"url":null,"abstract":"<div><div>Silicosis, formerly known as silico, is an irreversible disease caused by prolonged inhalation of substantial amounts of free crystalline silica dust, characterized by pulmonary inflammation and extensive nodular fibrosis. The etiology of the disease remains unclear, which currently hinders the development of effective therapeutic drugs and interventions. Ingenol (Ing), a terpenoid active ingredient found in plants of the Euphorbiaceae family, including the entire herb of <em>Euphorbia helioscopia</em>, <em>Euphorbia kansui</em>, or <em>Euphorbia lathyris</em>, demonstrates significant anti-inflammatory and antiviral activities. In this study, we identified and confirmed that Ingenol can significantly ameliorate silicosis induced by silica dioxide by inhibiting the PTGS2/PI3K/AKT signaling pathway. In vivo, Ingenol improves pulmonary respiratory function and reduces inflammation and fibrosis in a murine model of CS-induced silicosis. In vitro, Ingenol inhibits the expression of cellular factors associated with inflammation and fibrosis, as well as macrophage apoptosis and fibroblast migration. Furthermore, it can modulate the expression of fibrosis-related proteins, thereby inhibiting CS-induced fibrotic responses. Mechanistically, a combination of bioinformatics, network pharmacology, and experimental validation indicates that Ingenol mitigates the progression of silicosis by modulating the PTGS2/PI3K/AKT signaling pathway. In summary, these findings suggest that Ingenol is a potential candidate for the treatment of silicosis.</div></div>","PeriodicalId":9902,"journal":{"name":"Cellular signalling","volume":"131 ","pages":"Article 111780"},"PeriodicalIF":4.4000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ingenol ameliorates silicosis via targeting the PTGS2/PI3K/AKT signaling axis: Implications for therapeutic intervention\",\"authors\":\"Yifan Jing , Ying Bai , Chao Liang , Yafeng Liu , Jiawei Zhou , Jianqiang Guo , Xiaolong Cai , Xiaofei Hu , Yujing Fang , Xuansheng Ding , Jing Wu , Dong Hu\",\"doi\":\"10.1016/j.cellsig.2025.111780\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Silicosis, formerly known as silico, is an irreversible disease caused by prolonged inhalation of substantial amounts of free crystalline silica dust, characterized by pulmonary inflammation and extensive nodular fibrosis. The etiology of the disease remains unclear, which currently hinders the development of effective therapeutic drugs and interventions. Ingenol (Ing), a terpenoid active ingredient found in plants of the Euphorbiaceae family, including the entire herb of <em>Euphorbia helioscopia</em>, <em>Euphorbia kansui</em>, or <em>Euphorbia lathyris</em>, demonstrates significant anti-inflammatory and antiviral activities. In this study, we identified and confirmed that Ingenol can significantly ameliorate silicosis induced by silica dioxide by inhibiting the PTGS2/PI3K/AKT signaling pathway. In vivo, Ingenol improves pulmonary respiratory function and reduces inflammation and fibrosis in a murine model of CS-induced silicosis. In vitro, Ingenol inhibits the expression of cellular factors associated with inflammation and fibrosis, as well as macrophage apoptosis and fibroblast migration. Furthermore, it can modulate the expression of fibrosis-related proteins, thereby inhibiting CS-induced fibrotic responses. Mechanistically, a combination of bioinformatics, network pharmacology, and experimental validation indicates that Ingenol mitigates the progression of silicosis by modulating the PTGS2/PI3K/AKT signaling pathway. In summary, these findings suggest that Ingenol is a potential candidate for the treatment of silicosis.</div></div>\",\"PeriodicalId\":9902,\"journal\":{\"name\":\"Cellular signalling\",\"volume\":\"131 \",\"pages\":\"Article 111780\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellular signalling\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0898656825001937\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular signalling","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898656825001937","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Ingenol ameliorates silicosis via targeting the PTGS2/PI3K/AKT signaling axis: Implications for therapeutic intervention
Silicosis, formerly known as silico, is an irreversible disease caused by prolonged inhalation of substantial amounts of free crystalline silica dust, characterized by pulmonary inflammation and extensive nodular fibrosis. The etiology of the disease remains unclear, which currently hinders the development of effective therapeutic drugs and interventions. Ingenol (Ing), a terpenoid active ingredient found in plants of the Euphorbiaceae family, including the entire herb of Euphorbia helioscopia, Euphorbia kansui, or Euphorbia lathyris, demonstrates significant anti-inflammatory and antiviral activities. In this study, we identified and confirmed that Ingenol can significantly ameliorate silicosis induced by silica dioxide by inhibiting the PTGS2/PI3K/AKT signaling pathway. In vivo, Ingenol improves pulmonary respiratory function and reduces inflammation and fibrosis in a murine model of CS-induced silicosis. In vitro, Ingenol inhibits the expression of cellular factors associated with inflammation and fibrosis, as well as macrophage apoptosis and fibroblast migration. Furthermore, it can modulate the expression of fibrosis-related proteins, thereby inhibiting CS-induced fibrotic responses. Mechanistically, a combination of bioinformatics, network pharmacology, and experimental validation indicates that Ingenol mitigates the progression of silicosis by modulating the PTGS2/PI3K/AKT signaling pathway. In summary, these findings suggest that Ingenol is a potential candidate for the treatment of silicosis.
期刊介绍:
Cellular Signalling publishes original research describing fundamental and clinical findings on the mechanisms, actions and structural components of cellular signalling systems in vitro and in vivo.
Cellular Signalling aims at full length research papers defining signalling systems ranging from microorganisms to cells, tissues and higher organisms.