基于视觉的无标定区域扫描梁式结构损伤识别

IF 9.6 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Panjie Li , Shuaihui Yan , Menghao Hu , Can Cui , Jinke Li , Yuyang Pang
{"title":"基于视觉的无标定区域扫描梁式结构损伤识别","authors":"Panjie Li ,&nbsp;Shuaihui Yan ,&nbsp;Menghao Hu ,&nbsp;Can Cui ,&nbsp;Jinke Li ,&nbsp;Yuyang Pang","doi":"10.1016/j.autcon.2025.106156","DOIUrl":null,"url":null,"abstract":"<div><div>The conversion of image coordinates to physical coordinates, usually through camera calibration, is necessary to obtain the accurate displacement when using the vision-based measurement system. This paper proposes a vision-based damage identification for beam-type structures using area scanning without calibration. First, the modal parameter identification using the uncalibrated pixel displacement is derived to verify the feasibility of omitting the calibration process. Then, a flexible area damage detection is proposed through area scanning tactic, which focus on the desired detection area without the consideration of the overlapping region measurement and the baseline mode shape data. Finally, an experiment validation involving two scanning strategies is performed to verify and demonstrate the effectiveness and accessibility of the proposed method. The results indicate that the fluctuation of mode shape curvature (MSC) caused by damage needs to be greater than that of MSC itself to make the damage identification successful.</div></div>","PeriodicalId":8660,"journal":{"name":"Automation in Construction","volume":"174 ","pages":"Article 106156"},"PeriodicalIF":9.6000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vision-based damage identification for beam-type structures using area scanning without calibration\",\"authors\":\"Panjie Li ,&nbsp;Shuaihui Yan ,&nbsp;Menghao Hu ,&nbsp;Can Cui ,&nbsp;Jinke Li ,&nbsp;Yuyang Pang\",\"doi\":\"10.1016/j.autcon.2025.106156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The conversion of image coordinates to physical coordinates, usually through camera calibration, is necessary to obtain the accurate displacement when using the vision-based measurement system. This paper proposes a vision-based damage identification for beam-type structures using area scanning without calibration. First, the modal parameter identification using the uncalibrated pixel displacement is derived to verify the feasibility of omitting the calibration process. Then, a flexible area damage detection is proposed through area scanning tactic, which focus on the desired detection area without the consideration of the overlapping region measurement and the baseline mode shape data. Finally, an experiment validation involving two scanning strategies is performed to verify and demonstrate the effectiveness and accessibility of the proposed method. The results indicate that the fluctuation of mode shape curvature (MSC) caused by damage needs to be greater than that of MSC itself to make the damage identification successful.</div></div>\",\"PeriodicalId\":8660,\"journal\":{\"name\":\"Automation in Construction\",\"volume\":\"174 \",\"pages\":\"Article 106156\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Automation in Construction\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926580525001967\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automation in Construction","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926580525001967","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在使用基于视觉的测量系统时,为了获得准确的位移,通常需要通过相机标定将图像坐标转换为物理坐标。提出了一种基于视觉的无标定区域扫描损伤识别方法。首先,推导了利用未标定像素位移进行模态参数辨识的方法,验证了省略标定过程的可行性。然后,通过区域扫描策略提出了一种柔性区域损伤检测方法,该方法不考虑重叠区域测量和基线模态振型数据,只关注期望的检测区域;最后,对两种扫描策略进行了实验验证,验证了所提方法的有效性和可及性。结果表明,损伤引起的模态振型曲率波动必须大于模态振型曲率本身波动,才能成功进行损伤识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vision-based damage identification for beam-type structures using area scanning without calibration
The conversion of image coordinates to physical coordinates, usually through camera calibration, is necessary to obtain the accurate displacement when using the vision-based measurement system. This paper proposes a vision-based damage identification for beam-type structures using area scanning without calibration. First, the modal parameter identification using the uncalibrated pixel displacement is derived to verify the feasibility of omitting the calibration process. Then, a flexible area damage detection is proposed through area scanning tactic, which focus on the desired detection area without the consideration of the overlapping region measurement and the baseline mode shape data. Finally, an experiment validation involving two scanning strategies is performed to verify and demonstrate the effectiveness and accessibility of the proposed method. The results indicate that the fluctuation of mode shape curvature (MSC) caused by damage needs to be greater than that of MSC itself to make the damage identification successful.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Automation in Construction
Automation in Construction 工程技术-工程:土木
CiteScore
19.20
自引率
16.50%
发文量
563
审稿时长
8.5 months
期刊介绍: Automation in Construction is an international journal that focuses on publishing original research papers related to the use of Information Technologies in various aspects of the construction industry. The journal covers topics such as design, engineering, construction technologies, and the maintenance and management of constructed facilities. The scope of Automation in Construction is extensive and covers all stages of the construction life cycle. This includes initial planning and design, construction of the facility, operation and maintenance, as well as the eventual dismantling and recycling of buildings and engineering structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信