手掌生物识别的单源域泛化

IF 7.5 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Congcong Jia , Xingbo Dong , Yen Lung Lai , Andrew Beng Jin Teoh , Ziyuan Yang , Xiaoyan Zhang , Liwen Wang , Zhe Jin , Lianqiang Yang
{"title":"手掌生物识别的单源域泛化","authors":"Congcong Jia ,&nbsp;Xingbo Dong ,&nbsp;Yen Lung Lai ,&nbsp;Andrew Beng Jin Teoh ,&nbsp;Ziyuan Yang ,&nbsp;Xiaoyan Zhang ,&nbsp;Liwen Wang ,&nbsp;Zhe Jin ,&nbsp;Lianqiang Yang","doi":"10.1016/j.patcog.2025.111620","DOIUrl":null,"url":null,"abstract":"<div><div>In palmprint recognition, domain shifts caused by device differences and environmental variations presents a significant challenge. Existing approaches often require multiple source domains for effective domain generalization (DG), limiting their applicability in single-source domain scenarios. To address this challenge, we propose PalmRSS, a novel Palm Recognition approach based on Single Source Domain Generalization (SSDG). PalmRSS reframes the SSDG problem as a DG problem by partitioning the source domain dataset into subsets and employing image alignment and adversarial training. PalmRSS exchanges low-level frequencies of palm data and performs histogram matching between samples to align spectral characteristics and pixel intensity distributions. Experiments demonstrate that PalmRSS outperforms state-of-the-art methods, highlighting its effectiveness in single source domain generalization. The code is released at <span><span>https://github.com/yocii/PalmRSS</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":49713,"journal":{"name":"Pattern Recognition","volume":"165 ","pages":"Article 111620"},"PeriodicalIF":7.5000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Single source domain generalization for palm biometrics\",\"authors\":\"Congcong Jia ,&nbsp;Xingbo Dong ,&nbsp;Yen Lung Lai ,&nbsp;Andrew Beng Jin Teoh ,&nbsp;Ziyuan Yang ,&nbsp;Xiaoyan Zhang ,&nbsp;Liwen Wang ,&nbsp;Zhe Jin ,&nbsp;Lianqiang Yang\",\"doi\":\"10.1016/j.patcog.2025.111620\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In palmprint recognition, domain shifts caused by device differences and environmental variations presents a significant challenge. Existing approaches often require multiple source domains for effective domain generalization (DG), limiting their applicability in single-source domain scenarios. To address this challenge, we propose PalmRSS, a novel Palm Recognition approach based on Single Source Domain Generalization (SSDG). PalmRSS reframes the SSDG problem as a DG problem by partitioning the source domain dataset into subsets and employing image alignment and adversarial training. PalmRSS exchanges low-level frequencies of palm data and performs histogram matching between samples to align spectral characteristics and pixel intensity distributions. Experiments demonstrate that PalmRSS outperforms state-of-the-art methods, highlighting its effectiveness in single source domain generalization. The code is released at <span><span>https://github.com/yocii/PalmRSS</span><svg><path></path></svg></span>.</div></div>\",\"PeriodicalId\":49713,\"journal\":{\"name\":\"Pattern Recognition\",\"volume\":\"165 \",\"pages\":\"Article 111620\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pattern Recognition\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0031320325002808\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0031320325002808","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

在掌纹识别中,由设备差异和环境变化引起的领域偏移是一个重大挑战。现有的方法通常需要多个源域才能进行有效的域泛化(DG),这限制了它们在单源域场景中的适用性。为了解决这一挑战,我们提出了一种基于单源域泛化(SSDG)的新颖手掌识别方法PalmRSS。PalmRSS通过将源域数据集划分为子集并使用图像对齐和对抗性训练,将SSDG问题重新定义为DG问题。PalmRSS交换手掌数据的低频率,并在样本之间进行直方图匹配,以对齐光谱特征和像素强度分布。实验表明,PalmRSS优于最先进的方法,突出了其在单源域泛化方面的有效性。该代码发布在https://github.com/yocii/PalmRSS。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Single source domain generalization for palm biometrics
In palmprint recognition, domain shifts caused by device differences and environmental variations presents a significant challenge. Existing approaches often require multiple source domains for effective domain generalization (DG), limiting their applicability in single-source domain scenarios. To address this challenge, we propose PalmRSS, a novel Palm Recognition approach based on Single Source Domain Generalization (SSDG). PalmRSS reframes the SSDG problem as a DG problem by partitioning the source domain dataset into subsets and employing image alignment and adversarial training. PalmRSS exchanges low-level frequencies of palm data and performs histogram matching between samples to align spectral characteristics and pixel intensity distributions. Experiments demonstrate that PalmRSS outperforms state-of-the-art methods, highlighting its effectiveness in single source domain generalization. The code is released at https://github.com/yocii/PalmRSS.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pattern Recognition
Pattern Recognition 工程技术-工程:电子与电气
CiteScore
14.40
自引率
16.20%
发文量
683
审稿时长
5.6 months
期刊介绍: The field of Pattern Recognition is both mature and rapidly evolving, playing a crucial role in various related fields such as computer vision, image processing, text analysis, and neural networks. It closely intersects with machine learning and is being applied in emerging areas like biometrics, bioinformatics, multimedia data analysis, and data science. The journal Pattern Recognition, established half a century ago during the early days of computer science, has since grown significantly in scope and influence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信