调节碳纳米带的空腔尺寸以增强氧还原反应

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Tingting Xu, Xiaofei Zhang*, Zao Wang, Pei Wen Ng, Liuying Jiao, Shi-Qiang Wang, Khoong Hong Khoo, Zhengtao Xu, Jishan Wu and Jun Zhu*, 
{"title":"调节碳纳米带的空腔尺寸以增强氧还原反应","authors":"Tingting Xu,&nbsp;Xiaofei Zhang*,&nbsp;Zao Wang,&nbsp;Pei Wen Ng,&nbsp;Liuying Jiao,&nbsp;Shi-Qiang Wang,&nbsp;Khoong Hong Khoo,&nbsp;Zhengtao Xu,&nbsp;Jishan Wu and Jun Zhu*,&nbsp;","doi":"10.1021/acsami.4c2301610.1021/acsami.4c23016","DOIUrl":null,"url":null,"abstract":"<p >The preactivation of reactants within the cavities of carbon nanotubular materials has remained largely unexplored due to the scarcity of materials with well-defined sizes and precisely engineered doping sites. Herein, we demonstrate that the catalytic activity toward the oxygen reduction reaction (ORR) is primarily governed by the cavity sizes of well-defined nanobelt materials with precisely doped <i>sp</i><sup>2</sup>-nitrogen atoms. Our results show that the confinement effect induced by cavity size and the electron-rich chemical environment within the cavity are crucial for O<sub>2</sub> adsorption and preactivation, leading to enhanced catalytic activity. <b>Belt2</b>, with its medium-sized cavity (6.3 Å), exhibits superior ORR catalytic performance compared to <b>Belt1</b> with its narrower cavity and <b>Belt3</b>/<b>Belt4</b> with its larger cavities. Notably, <b>Belt2</b> achieves high half-wave and onset potentials of 0.84 and 0.97 V, respectively, along with an open-circuit voltage of 1.32 V and a peak power density of 181 mW cm<sup>–2</sup> in a zinc-air battery. This work not only provides a deeper understanding of the geometric factors influencing the ORR electrocatalysis of nanocarbon materials but also offers insights into the future design of nanocarbon electrocatalysts for enhancing catalytic efficiency. These findings may also be beneficial for other energy conversion and catalytic materials.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"17 13","pages":"20096–20104 20096–20104"},"PeriodicalIF":8.2000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modulating the Cavity Size of Carbon Nanobelts for Enhanced Oxygen Reduction Reaction\",\"authors\":\"Tingting Xu,&nbsp;Xiaofei Zhang*,&nbsp;Zao Wang,&nbsp;Pei Wen Ng,&nbsp;Liuying Jiao,&nbsp;Shi-Qiang Wang,&nbsp;Khoong Hong Khoo,&nbsp;Zhengtao Xu,&nbsp;Jishan Wu and Jun Zhu*,&nbsp;\",\"doi\":\"10.1021/acsami.4c2301610.1021/acsami.4c23016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The preactivation of reactants within the cavities of carbon nanotubular materials has remained largely unexplored due to the scarcity of materials with well-defined sizes and precisely engineered doping sites. Herein, we demonstrate that the catalytic activity toward the oxygen reduction reaction (ORR) is primarily governed by the cavity sizes of well-defined nanobelt materials with precisely doped <i>sp</i><sup>2</sup>-nitrogen atoms. Our results show that the confinement effect induced by cavity size and the electron-rich chemical environment within the cavity are crucial for O<sub>2</sub> adsorption and preactivation, leading to enhanced catalytic activity. <b>Belt2</b>, with its medium-sized cavity (6.3 Å), exhibits superior ORR catalytic performance compared to <b>Belt1</b> with its narrower cavity and <b>Belt3</b>/<b>Belt4</b> with its larger cavities. Notably, <b>Belt2</b> achieves high half-wave and onset potentials of 0.84 and 0.97 V, respectively, along with an open-circuit voltage of 1.32 V and a peak power density of 181 mW cm<sup>–2</sup> in a zinc-air battery. This work not only provides a deeper understanding of the geometric factors influencing the ORR electrocatalysis of nanocarbon materials but also offers insights into the future design of nanocarbon electrocatalysts for enhancing catalytic efficiency. These findings may also be beneficial for other energy conversion and catalytic materials.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"17 13\",\"pages\":\"20096–20104 20096–20104\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsami.4c23016\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsami.4c23016","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

由于缺乏具有明确尺寸和精确设计掺杂位点的材料,碳纳米管材料腔内反应物的预活化在很大程度上尚未被探索。在此,我们证明了氧还原反应(ORR)的催化活性主要由精确掺杂sp2-氮原子的明确定义的纳米带材料的空腔尺寸决定。我们的研究结果表明,由腔大小和腔内富电子的化学环境引起的约束效应对O2的吸附和预活化至关重要,从而导致催化活性的增强。中等空腔(6.3 Å)的Belt2比空腔较窄的Belt1和空腔较大的Belt3/Belt4表现出更好的ORR催化性能。值得注意的是,在锌空气电池中,Belt2的半波和起始电位分别为0.84和0.97 V,开路电压为1.32 V,峰值功率密度为181 mW cm-2。这项工作不仅对影响纳米碳材料ORR电催化的几何因素有了更深入的了解,也为未来纳米碳电催化剂的设计提供了见解,以提高催化效率。这些发现对其他能量转化和催化材料也有一定的借鉴意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Modulating the Cavity Size of Carbon Nanobelts for Enhanced Oxygen Reduction Reaction

Modulating the Cavity Size of Carbon Nanobelts for Enhanced Oxygen Reduction Reaction

The preactivation of reactants within the cavities of carbon nanotubular materials has remained largely unexplored due to the scarcity of materials with well-defined sizes and precisely engineered doping sites. Herein, we demonstrate that the catalytic activity toward the oxygen reduction reaction (ORR) is primarily governed by the cavity sizes of well-defined nanobelt materials with precisely doped sp2-nitrogen atoms. Our results show that the confinement effect induced by cavity size and the electron-rich chemical environment within the cavity are crucial for O2 adsorption and preactivation, leading to enhanced catalytic activity. Belt2, with its medium-sized cavity (6.3 Å), exhibits superior ORR catalytic performance compared to Belt1 with its narrower cavity and Belt3/Belt4 with its larger cavities. Notably, Belt2 achieves high half-wave and onset potentials of 0.84 and 0.97 V, respectively, along with an open-circuit voltage of 1.32 V and a peak power density of 181 mW cm–2 in a zinc-air battery. This work not only provides a deeper understanding of the geometric factors influencing the ORR electrocatalysis of nanocarbon materials but also offers insights into the future design of nanocarbon electrocatalysts for enhancing catalytic efficiency. These findings may also be beneficial for other energy conversion and catalytic materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信