低温应用中硅-氮化铝混合集成平台的声光调制

IF 9.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Weixiong Huang, Lipeng Xia, Jiawei Li, Yuhan Sun, Aoxue Zhang, Hong Zhang, Chang Chang, Yuxi Wang, Wenzhen Li, Yang Li, Xiaochuan Xu*, Tao Wu* and Yi Zou*, 
{"title":"低温应用中硅-氮化铝混合集成平台的声光调制","authors":"Weixiong Huang,&nbsp;Lipeng Xia,&nbsp;Jiawei Li,&nbsp;Yuhan Sun,&nbsp;Aoxue Zhang,&nbsp;Hong Zhang,&nbsp;Chang Chang,&nbsp;Yuxi Wang,&nbsp;Wenzhen Li,&nbsp;Yang Li,&nbsp;Xiaochuan Xu*,&nbsp;Tao Wu* and Yi Zou*,&nbsp;","doi":"10.1021/acs.nanolett.4c0568010.1021/acs.nanolett.4c05680","DOIUrl":null,"url":null,"abstract":"<p >Silicon platforms are widely recognized as an industry standard for photonic integrated circuits. However, conventional tuning mechanisms, such as thermo-optic and plasma dispersion effects, impose limitations in advanced applications, such as quantum computing, where low-loss and cryogenic operation are critical. Acousto-optic (AO) modulation offers a promising alternative, broadening the scope of silicon photonics. Here, we investigate an aluminum nitride (AlN)-silicon hybrid platform to enable AO modulation on silicon waveguides. The AO interaction is enhanced through a Fabry–Perot resonant cavity, achieving a π-phase shift voltage (<i>V</i><sub>π</sub>) of 27.8 V and a half-wave voltage-length product (<i>V</i><sub>π</sub><i>L</i>) of 0.55 V·cm with a modulation length of 200 μm. We also demonstrate AO modulation under cryogenic conditions, where the device performance metrics improve to 16.5 V and 0.33 V·cm, respectively. Fabricated using complementary metal-oxide-semiconductor-compatible processes, this AlN-silicon device offers seamless integration with photonic and electronic components, underscoring its potential for next-generation photonic systems.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"25 13","pages":"5117–5123 5117–5123"},"PeriodicalIF":9.1000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Acousto-Optic Modulation on Silicon-Aluminum Nitride Hybrid-Integrated Platform for Cryogenic Applications\",\"authors\":\"Weixiong Huang,&nbsp;Lipeng Xia,&nbsp;Jiawei Li,&nbsp;Yuhan Sun,&nbsp;Aoxue Zhang,&nbsp;Hong Zhang,&nbsp;Chang Chang,&nbsp;Yuxi Wang,&nbsp;Wenzhen Li,&nbsp;Yang Li,&nbsp;Xiaochuan Xu*,&nbsp;Tao Wu* and Yi Zou*,&nbsp;\",\"doi\":\"10.1021/acs.nanolett.4c0568010.1021/acs.nanolett.4c05680\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Silicon platforms are widely recognized as an industry standard for photonic integrated circuits. However, conventional tuning mechanisms, such as thermo-optic and plasma dispersion effects, impose limitations in advanced applications, such as quantum computing, where low-loss and cryogenic operation are critical. Acousto-optic (AO) modulation offers a promising alternative, broadening the scope of silicon photonics. Here, we investigate an aluminum nitride (AlN)-silicon hybrid platform to enable AO modulation on silicon waveguides. The AO interaction is enhanced through a Fabry–Perot resonant cavity, achieving a π-phase shift voltage (<i>V</i><sub>π</sub>) of 27.8 V and a half-wave voltage-length product (<i>V</i><sub>π</sub><i>L</i>) of 0.55 V·cm with a modulation length of 200 μm. We also demonstrate AO modulation under cryogenic conditions, where the device performance metrics improve to 16.5 V and 0.33 V·cm, respectively. Fabricated using complementary metal-oxide-semiconductor-compatible processes, this AlN-silicon device offers seamless integration with photonic and electronic components, underscoring its potential for next-generation photonic systems.</p>\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\"25 13\",\"pages\":\"5117–5123 5117–5123\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.nanolett.4c05680\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.nanolett.4c05680","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

硅平台被广泛认为是光子集成电路的行业标准。然而,传统的调谐机制,如热光学和等离子体色散效应,在量子计算等高级应用中施加了限制,在这些应用中,低损耗和低温操作至关重要。声光(AO)调制提供了一个有前途的替代方案,扩大了硅光子学的范围。在这里,我们研究了一种氮化铝(AlN)-硅混合平台,以实现硅波导上的AO调制。通过Fabry-Perot谐振腔增强AO相互作用,实现了27.8 V的π相移电压和0.55 V·cm的半波电压长度积(Vπ l),调制长度为200 μm。我们还演示了低温条件下的AO调制,其中器件性能指标分别提高到16.5 V和0.33 V·cm。这种铝硅器件采用互补的金属氧化物半导体兼容工艺制造,可与光子和电子元件无缝集成,强调了其下一代光子系统的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Acousto-Optic Modulation on Silicon-Aluminum Nitride Hybrid-Integrated Platform for Cryogenic Applications

Acousto-Optic Modulation on Silicon-Aluminum Nitride Hybrid-Integrated Platform for Cryogenic Applications

Silicon platforms are widely recognized as an industry standard for photonic integrated circuits. However, conventional tuning mechanisms, such as thermo-optic and plasma dispersion effects, impose limitations in advanced applications, such as quantum computing, where low-loss and cryogenic operation are critical. Acousto-optic (AO) modulation offers a promising alternative, broadening the scope of silicon photonics. Here, we investigate an aluminum nitride (AlN)-silicon hybrid platform to enable AO modulation on silicon waveguides. The AO interaction is enhanced through a Fabry–Perot resonant cavity, achieving a π-phase shift voltage (Vπ) of 27.8 V and a half-wave voltage-length product (VπL) of 0.55 V·cm with a modulation length of 200 μm. We also demonstrate AO modulation under cryogenic conditions, where the device performance metrics improve to 16.5 V and 0.33 V·cm, respectively. Fabricated using complementary metal-oxide-semiconductor-compatible processes, this AlN-silicon device offers seamless integration with photonic and electronic components, underscoring its potential for next-generation photonic systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信