具有高密度亲水性位的沸石金属-有机骨架用于高效质子传导

IF 3.2 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Ping Li, Junchao Dong, Hao Zhang, Jialu Li*, Jiyang Li, Jia Liu*, Fanyu Meng* and Xiaoqin Zou*, 
{"title":"具有高密度亲水性位的沸石金属-有机骨架用于高效质子传导","authors":"Ping Li,&nbsp;Junchao Dong,&nbsp;Hao Zhang,&nbsp;Jialu Li*,&nbsp;Jiyang Li,&nbsp;Jia Liu*,&nbsp;Fanyu Meng* and Xiaoqin Zou*,&nbsp;","doi":"10.1021/acs.cgd.5c0008110.1021/acs.cgd.5c00081","DOIUrl":null,"url":null,"abstract":"<p >Proton exchange membranes play a key role in fuel cells; however, the development of highly proton-conductive and stable materials still remains a challenge. Herein, a hydrolysis coordination strategy was proposed for the synthesis of a three-dimensional porous metal–organic framework (MOF) [Zn<sub>8</sub>Na<sub>4</sub>(ImDC)<sub>12</sub>]. This MOF was structured with an ACO zeolite topology and high-density hydrophilic sites of nitrogen and oxygen. Under high-temperature and humidity conditions (353 K, 76% RH), [Zn<sub>8</sub>Na<sub>4</sub>(ImDC)<sub>12</sub>] exhibited proton conductivity as high as 0.016 S cm<sup>–1</sup>, outperforming that of most MOF materials reported previously. Mixed-matrix membranes of [Zn<sub>8</sub>Na<sub>4</sub>(ImDC)<sub>12</sub>]@CS were fabricated with [Zn<sub>8</sub>Na<sub>4</sub>(ImDC)<sub>12</sub>] and a chitosan polymer. The membrane with 10 wt % [Zn<sub>8</sub>Na<sub>4</sub>(ImDC)<sub>12</sub>] showed an optimal proton conductivity of 0.051 S cm<sup>–1</sup>. This study provides guidance for developing high-performance proton conduction materials.</p>","PeriodicalId":34,"journal":{"name":"Crystal Growth & Design","volume":"25 7","pages":"2155–2162 2155–2162"},"PeriodicalIF":3.2000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Zeolitic Metal–Organic Framework with High-Density Hydrophilic Sites for Efficient Proton Conduction\",\"authors\":\"Ping Li,&nbsp;Junchao Dong,&nbsp;Hao Zhang,&nbsp;Jialu Li*,&nbsp;Jiyang Li,&nbsp;Jia Liu*,&nbsp;Fanyu Meng* and Xiaoqin Zou*,&nbsp;\",\"doi\":\"10.1021/acs.cgd.5c0008110.1021/acs.cgd.5c00081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Proton exchange membranes play a key role in fuel cells; however, the development of highly proton-conductive and stable materials still remains a challenge. Herein, a hydrolysis coordination strategy was proposed for the synthesis of a three-dimensional porous metal–organic framework (MOF) [Zn<sub>8</sub>Na<sub>4</sub>(ImDC)<sub>12</sub>]. This MOF was structured with an ACO zeolite topology and high-density hydrophilic sites of nitrogen and oxygen. Under high-temperature and humidity conditions (353 K, 76% RH), [Zn<sub>8</sub>Na<sub>4</sub>(ImDC)<sub>12</sub>] exhibited proton conductivity as high as 0.016 S cm<sup>–1</sup>, outperforming that of most MOF materials reported previously. Mixed-matrix membranes of [Zn<sub>8</sub>Na<sub>4</sub>(ImDC)<sub>12</sub>]@CS were fabricated with [Zn<sub>8</sub>Na<sub>4</sub>(ImDC)<sub>12</sub>] and a chitosan polymer. The membrane with 10 wt % [Zn<sub>8</sub>Na<sub>4</sub>(ImDC)<sub>12</sub>] showed an optimal proton conductivity of 0.051 S cm<sup>–1</sup>. This study provides guidance for developing high-performance proton conduction materials.</p>\",\"PeriodicalId\":34,\"journal\":{\"name\":\"Crystal Growth & Design\",\"volume\":\"25 7\",\"pages\":\"2155–2162 2155–2162\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Crystal Growth & Design\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.cgd.5c00081\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystal Growth & Design","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.cgd.5c00081","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

质子交换膜在燃料电池中起着关键作用;然而,开发高质子导电性和稳定性的材料仍然是一个挑战。本文提出了一种水解配位策略,用于合成三维多孔金属有机骨架(MOF) [Zn8Na4(ImDC)12]。该MOF具有ACO沸石拓扑结构和高密度的氮氧亲水性位点。在高温和潮湿条件下(353 K, 76% RH), [Zn8Na4(ImDC)12]的质子电导率高达0.016 S cm-1,优于之前报道的大多数MOF材料。用[Zn8Na4(ImDC)12]和壳聚糖聚合物制备了[Zn8Na4(ImDC)12]@CS混合基质膜。10 wt % [Zn8Na4(ImDC)12]的膜的最佳质子电导率为0.051 S cm-1。该研究为高性能质子传导材料的开发提供了指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Zeolitic Metal–Organic Framework with High-Density Hydrophilic Sites for Efficient Proton Conduction

Zeolitic Metal–Organic Framework with High-Density Hydrophilic Sites for Efficient Proton Conduction

Proton exchange membranes play a key role in fuel cells; however, the development of highly proton-conductive and stable materials still remains a challenge. Herein, a hydrolysis coordination strategy was proposed for the synthesis of a three-dimensional porous metal–organic framework (MOF) [Zn8Na4(ImDC)12]. This MOF was structured with an ACO zeolite topology and high-density hydrophilic sites of nitrogen and oxygen. Under high-temperature and humidity conditions (353 K, 76% RH), [Zn8Na4(ImDC)12] exhibited proton conductivity as high as 0.016 S cm–1, outperforming that of most MOF materials reported previously. Mixed-matrix membranes of [Zn8Na4(ImDC)12]@CS were fabricated with [Zn8Na4(ImDC)12] and a chitosan polymer. The membrane with 10 wt % [Zn8Na4(ImDC)12] showed an optimal proton conductivity of 0.051 S cm–1. This study provides guidance for developing high-performance proton conduction materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Crystal Growth & Design
Crystal Growth & Design 化学-材料科学:综合
CiteScore
6.30
自引率
10.50%
发文量
650
审稿时长
1.9 months
期刊介绍: The aim of Crystal Growth & Design is to stimulate crossfertilization of knowledge among scientists and engineers working in the fields of crystal growth, crystal engineering, and the industrial application of crystalline materials. Crystal Growth & Design publishes theoretical and experimental studies of the physical, chemical, and biological phenomena and processes related to the design, growth, and application of crystalline materials. Synergistic approaches originating from different disciplines and technologies and integrating the fields of crystal growth, crystal engineering, intermolecular interactions, and industrial application are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信