Fang Zhao, Yuxuan Su, Hong Liu, Yong Zhao, Liao Zhang, Nanshan Zhuge, Peng Zhao, Zhaoliang Ning, Qi Kang and Dongxu Liu*,
{"title":"具有药物缓释和骨免疫调节作用的易溶纳米复合水凝胶支架促进骨再生","authors":"Fang Zhao, Yuxuan Su, Hong Liu, Yong Zhao, Liao Zhang, Nanshan Zhuge, Peng Zhao, Zhaoliang Ning, Qi Kang and Dongxu Liu*, ","doi":"10.1021/acsami.4c2039010.1021/acsami.4c20390","DOIUrl":null,"url":null,"abstract":"<p >High-quality repair of critical bone defects without exogenous cells remains a major clinical challenge worldwide. Herein, we fabricated a nanocomposite hydrogel scaffold (ASA/MSNs/CSH) by incorporating aspirin (ASA)-loaded mesoporous silica nanoparticles (MSNs) into genipin-cross-linked chitosan hydrochloride (CSH). The resulting scaffold was designed to provide immunomodulatory support during the process of bone regeneration. ASA-loaded MSNs were encapsulated in CSH, forming a composite hydrogel capable of sustained drug release for over 35 days. This composite hydrogel was able to meet key criteria for physicochemical properties, mechanical strength, biocompatibility, and cell affinity. The study showed that the scaffolds could create a beneficial immune microenvironment through reducing inflammation and inducing macrophages toward M2-polarized phenotype in vitro. The scaffold also enhanced the osteogenesis of bone marrow mesenchymal stromal cells, as demonstrated by enhancing the alkaline phosphatase activity and the formation of calcium nodules. Meanwhile, the TGF-β/Smad pathway was identified as an important regulatory mechanism via Western blot analysis. Moreover, the critical size defect models were established in rat skulls, and the results demonstrated that the ASA/MSNs/CSH nanocomposite scaffolds exhibited adequate biocompatibility, superior anti-inflammatory effect, and an admirable capacity for bone regeneration in vivo.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"17 13","pages":"19286–19303 19286–19303"},"PeriodicalIF":8.2000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Facile Nanocomposite Hydrogel Scaffold with Sustained Drug Release and Osteo-Immunomodulatory Effects to Enhance Bone Regeneration\",\"authors\":\"Fang Zhao, Yuxuan Su, Hong Liu, Yong Zhao, Liao Zhang, Nanshan Zhuge, Peng Zhao, Zhaoliang Ning, Qi Kang and Dongxu Liu*, \",\"doi\":\"10.1021/acsami.4c2039010.1021/acsami.4c20390\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >High-quality repair of critical bone defects without exogenous cells remains a major clinical challenge worldwide. Herein, we fabricated a nanocomposite hydrogel scaffold (ASA/MSNs/CSH) by incorporating aspirin (ASA)-loaded mesoporous silica nanoparticles (MSNs) into genipin-cross-linked chitosan hydrochloride (CSH). The resulting scaffold was designed to provide immunomodulatory support during the process of bone regeneration. ASA-loaded MSNs were encapsulated in CSH, forming a composite hydrogel capable of sustained drug release for over 35 days. This composite hydrogel was able to meet key criteria for physicochemical properties, mechanical strength, biocompatibility, and cell affinity. The study showed that the scaffolds could create a beneficial immune microenvironment through reducing inflammation and inducing macrophages toward M2-polarized phenotype in vitro. The scaffold also enhanced the osteogenesis of bone marrow mesenchymal stromal cells, as demonstrated by enhancing the alkaline phosphatase activity and the formation of calcium nodules. Meanwhile, the TGF-β/Smad pathway was identified as an important regulatory mechanism via Western blot analysis. Moreover, the critical size defect models were established in rat skulls, and the results demonstrated that the ASA/MSNs/CSH nanocomposite scaffolds exhibited adequate biocompatibility, superior anti-inflammatory effect, and an admirable capacity for bone regeneration in vivo.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"17 13\",\"pages\":\"19286–19303 19286–19303\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsami.4c20390\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsami.4c20390","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Facile Nanocomposite Hydrogel Scaffold with Sustained Drug Release and Osteo-Immunomodulatory Effects to Enhance Bone Regeneration
High-quality repair of critical bone defects without exogenous cells remains a major clinical challenge worldwide. Herein, we fabricated a nanocomposite hydrogel scaffold (ASA/MSNs/CSH) by incorporating aspirin (ASA)-loaded mesoporous silica nanoparticles (MSNs) into genipin-cross-linked chitosan hydrochloride (CSH). The resulting scaffold was designed to provide immunomodulatory support during the process of bone regeneration. ASA-loaded MSNs were encapsulated in CSH, forming a composite hydrogel capable of sustained drug release for over 35 days. This composite hydrogel was able to meet key criteria for physicochemical properties, mechanical strength, biocompatibility, and cell affinity. The study showed that the scaffolds could create a beneficial immune microenvironment through reducing inflammation and inducing macrophages toward M2-polarized phenotype in vitro. The scaffold also enhanced the osteogenesis of bone marrow mesenchymal stromal cells, as demonstrated by enhancing the alkaline phosphatase activity and the formation of calcium nodules. Meanwhile, the TGF-β/Smad pathway was identified as an important regulatory mechanism via Western blot analysis. Moreover, the critical size defect models were established in rat skulls, and the results demonstrated that the ASA/MSNs/CSH nanocomposite scaffolds exhibited adequate biocompatibility, superior anti-inflammatory effect, and an admirable capacity for bone regeneration in vivo.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.