共锚定空心碳化木棉纤维包封相变材料提升光热利用

IF 12.1 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-04-01 DOI:10.1002/smll.202500479
Yang Li, Yuhao Feng, Mulin Qin, Keke Chen, Yifeng An, Panpan Liu, Yu Jiang, Zhenghui Shen, Xiao Chen
{"title":"共锚定空心碳化木棉纤维包封相变材料提升光热利用","authors":"Yang Li,&nbsp;Yuhao Feng,&nbsp;Mulin Qin,&nbsp;Keke Chen,&nbsp;Yifeng An,&nbsp;Panpan Liu,&nbsp;Yu Jiang,&nbsp;Zhenghui Shen,&nbsp;Xiao Chen","doi":"10.1002/smll.202500479","DOIUrl":null,"url":null,"abstract":"<p>The efficient capture, conversion, and storage of solar energy present significant promise for advancing green energy utilization. However, pristine phase change materials (PCMs) are inherently inadequate for optical capture and absorption. To improve photothermal conversion properties, PCMs and metal-organic frameworks derived Co nanoparticle-anchored carbonized hollow fiber are advantageously integrated. The robust hollow carbon fiber tubular structure promises efficient thermal energy storage, fast phonon transfer, and excellent durability and structural stability after long heating-cooling cycles. Plasmonic Co nanoparticles and broadband-absorbing high graphitized hollow carbon fiber synergistically enhance light harvesting and energy conversion in composite PCMs, achieving 94.38% photothermal conversion efficiency (100 mW cm<sup>−2</sup>). This integration enables the simultaneous generation of electrical and thermal energy under randomly incident solar radiation. Attractively, the designed photothermoelectric system steadily realizes a continuous output voltage of 309.8 mV and output current of 70.0 mA (100 mW cm<sup>−2</sup>). This advantageous integrated design strategy provides constructive insights for developing next-generation composite PCMs toward efficient photothermoelectric conversion and storage systems.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"21 21","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Co-anchored Hollow Carbonized Kapok Fiber Encapsulated Phase Change Materials for Upgrading Photothermal Utilization\",\"authors\":\"Yang Li,&nbsp;Yuhao Feng,&nbsp;Mulin Qin,&nbsp;Keke Chen,&nbsp;Yifeng An,&nbsp;Panpan Liu,&nbsp;Yu Jiang,&nbsp;Zhenghui Shen,&nbsp;Xiao Chen\",\"doi\":\"10.1002/smll.202500479\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The efficient capture, conversion, and storage of solar energy present significant promise for advancing green energy utilization. However, pristine phase change materials (PCMs) are inherently inadequate for optical capture and absorption. To improve photothermal conversion properties, PCMs and metal-organic frameworks derived Co nanoparticle-anchored carbonized hollow fiber are advantageously integrated. The robust hollow carbon fiber tubular structure promises efficient thermal energy storage, fast phonon transfer, and excellent durability and structural stability after long heating-cooling cycles. Plasmonic Co nanoparticles and broadband-absorbing high graphitized hollow carbon fiber synergistically enhance light harvesting and energy conversion in composite PCMs, achieving 94.38% photothermal conversion efficiency (100 mW cm<sup>−2</sup>). This integration enables the simultaneous generation of electrical and thermal energy under randomly incident solar radiation. Attractively, the designed photothermoelectric system steadily realizes a continuous output voltage of 309.8 mV and output current of 70.0 mA (100 mW cm<sup>−2</sup>). This advantageous integrated design strategy provides constructive insights for developing next-generation composite PCMs toward efficient photothermoelectric conversion and storage systems.</p>\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\"21 21\",\"pages\":\"\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/smll.202500479\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202500479","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

太阳能的高效捕获、转换和储存为推进绿色能源利用提供了巨大的希望。然而,原始相变材料(PCMs)本身就不适合光捕获和吸收。为了提高光热转换性能,pcm和金属有机框架衍生的Co纳米颗粒锚定碳化中空纤维进行了有利的集成。坚固的中空碳纤维管状结构保证了高效的热能储存,快速的声子传递,以及在长时间的加热-冷却循环后优异的耐久性和结构稳定性。等离子体Co纳米粒子和宽带吸收高石墨化中空碳纤维协同增强复合pcm中的光收集和能量转换,实现了94.38%的光热转换效率(100 mW cm−2)。这种集成能够在随机入射的太阳辐射下同时产生电能和热能。引人注目的是,设计的光热电系统稳定地实现了309.8 mV的连续输出电压和70.0 mA (100 mW cm−2)的输出电流。这种优势的集成设计策略为开发下一代复合pcm以实现高效光热电转换和存储系统提供了建设性的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Co-anchored Hollow Carbonized Kapok Fiber Encapsulated Phase Change Materials for Upgrading Photothermal Utilization

Co-anchored Hollow Carbonized Kapok Fiber Encapsulated Phase Change Materials for Upgrading Photothermal Utilization

The efficient capture, conversion, and storage of solar energy present significant promise for advancing green energy utilization. However, pristine phase change materials (PCMs) are inherently inadequate for optical capture and absorption. To improve photothermal conversion properties, PCMs and metal-organic frameworks derived Co nanoparticle-anchored carbonized hollow fiber are advantageously integrated. The robust hollow carbon fiber tubular structure promises efficient thermal energy storage, fast phonon transfer, and excellent durability and structural stability after long heating-cooling cycles. Plasmonic Co nanoparticles and broadband-absorbing high graphitized hollow carbon fiber synergistically enhance light harvesting and energy conversion in composite PCMs, achieving 94.38% photothermal conversion efficiency (100 mW cm−2). This integration enables the simultaneous generation of electrical and thermal energy under randomly incident solar radiation. Attractively, the designed photothermoelectric system steadily realizes a continuous output voltage of 309.8 mV and output current of 70.0 mA (100 mW cm−2). This advantageous integrated design strategy provides constructive insights for developing next-generation composite PCMs toward efficient photothermoelectric conversion and storage systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信