多载流子操纵半导电陶瓷纳米复合材料的耐腐蚀电磁波吸收

IF 12.1 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-04-01 DOI:10.1002/smll.202500581
Yu Zhang, Siyuan Zhang, Di Lan, Jiahui Yao, Zhenguo Gao, Guanglei Wu, Jian Jiao
{"title":"多载流子操纵半导电陶瓷纳米复合材料的耐腐蚀电磁波吸收","authors":"Yu Zhang,&nbsp;Siyuan Zhang,&nbsp;Di Lan,&nbsp;Jiahui Yao,&nbsp;Zhenguo Gao,&nbsp;Guanglei Wu,&nbsp;Jian Jiao","doi":"10.1002/smll.202500581","DOIUrl":null,"url":null,"abstract":"<p>The modulation of transport properties in ceramic-based semiconductors can be used to optimize the electromagnetic response mechanism and performance. A semiconductor ceramic foam interlayer wall (SCFW) is designed by a physical vapor deposition method. The interlayer structural SCFW is composed of semiconductor-insulator-semiconductor layers, incorporating a composite system of SiC, Al<sub>4.8</sub>Si<sub>1.2</sub>O<sub>9.6</sub>, and Al<sub>2</sub>O<sub>3</sub>. Moreover, the hierarchical network structure of the foam interlayer wall is controlled by the pyrolysis-deposition kinetic process. Electrons and holes are transported through the heterojunctions between SiC and Al<sub>4.8</sub>Si<sub>1.2</sub>O<sub>9.6</sub>, achieving effective charge relaxation. The Al<sub>2</sub>O<sub>3</sub> matrix provides lightweight properties (density of 0.967 g cm<sup>−3</sup>), while the hierarchical network structure determines the excellent electromagnetic wave (EMW) absorption performance of the SCFW, with an effective bandwidth up to 14.8 GHz under electromagnetic response (minimum reflection loss <i>RL</i><sub>min</sub> = −50.6 dB). the SCFW has been proven to exhibit corrosion resistance and thermal insulation properties, with a thermal conductivity up to 0.025 W m<sup>−1</sup> K<sup>−1</sup>. This study provides valuable insights into the structural design and dielectric property optimization of ceramic-based semiconductor nanocomposites, which leads to strong polarization loss, opening new avenues for the application of EMW absorbers, and the EMW absorption mechanism of ceramics.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"21 20","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiple Charge Carriers Manipulation Toward Semiconductive Ceramic Nanocomposites for Corrosion-Resistant Electromagnetic Wave Absorption\",\"authors\":\"Yu Zhang,&nbsp;Siyuan Zhang,&nbsp;Di Lan,&nbsp;Jiahui Yao,&nbsp;Zhenguo Gao,&nbsp;Guanglei Wu,&nbsp;Jian Jiao\",\"doi\":\"10.1002/smll.202500581\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The modulation of transport properties in ceramic-based semiconductors can be used to optimize the electromagnetic response mechanism and performance. A semiconductor ceramic foam interlayer wall (SCFW) is designed by a physical vapor deposition method. The interlayer structural SCFW is composed of semiconductor-insulator-semiconductor layers, incorporating a composite system of SiC, Al<sub>4.8</sub>Si<sub>1.2</sub>O<sub>9.6</sub>, and Al<sub>2</sub>O<sub>3</sub>. Moreover, the hierarchical network structure of the foam interlayer wall is controlled by the pyrolysis-deposition kinetic process. Electrons and holes are transported through the heterojunctions between SiC and Al<sub>4.8</sub>Si<sub>1.2</sub>O<sub>9.6</sub>, achieving effective charge relaxation. The Al<sub>2</sub>O<sub>3</sub> matrix provides lightweight properties (density of 0.967 g cm<sup>−3</sup>), while the hierarchical network structure determines the excellent electromagnetic wave (EMW) absorption performance of the SCFW, with an effective bandwidth up to 14.8 GHz under electromagnetic response (minimum reflection loss <i>RL</i><sub>min</sub> = −50.6 dB). the SCFW has been proven to exhibit corrosion resistance and thermal insulation properties, with a thermal conductivity up to 0.025 W m<sup>−1</sup> K<sup>−1</sup>. This study provides valuable insights into the structural design and dielectric property optimization of ceramic-based semiconductor nanocomposites, which leads to strong polarization loss, opening new avenues for the application of EMW absorbers, and the EMW absorption mechanism of ceramics.</p>\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\"21 20\",\"pages\":\"\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/smll.202500581\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202500581","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

调制陶瓷基半导体的输运特性可用于优化其电磁响应机制和性能。采用物理气相沉积法设计了半导体陶瓷泡沫夹层壁。层间结构SCFW由半导体-绝缘体-半导体层组成,包含SiC, al4.8 si1.2 2o9.6和Al2O3的复合体系。泡沫层间壁的分层网络结构受热解-沉积动力学过程的控制。电子和空穴通过SiC和Al4.8Si1.2O9.6之间的异质结传输,实现有效的电荷弛豫。Al2O3基体提供了轻质特性(密度为0.967 g cm−3),而分层网络结构决定了SCFW出色的电磁波吸收性能,在电磁响应下有效带宽高达14.8 GHz(最小反射损耗RLmin =−50.6 dB)。SCFW已被证明具有耐腐蚀和保温性能,导热系数高达0.025 W m−1 K−1。该研究为陶瓷基半导体纳米复合材料的结构设计和介电性能优化提供了有价值的见解,从而导致强极化损耗,为EMW吸收剂的应用开辟了新的途径,以及陶瓷的EMW吸收机理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Multiple Charge Carriers Manipulation Toward Semiconductive Ceramic Nanocomposites for Corrosion-Resistant Electromagnetic Wave Absorption

Multiple Charge Carriers Manipulation Toward Semiconductive Ceramic Nanocomposites for Corrosion-Resistant Electromagnetic Wave Absorption

Multiple Charge Carriers Manipulation Toward Semiconductive Ceramic Nanocomposites for Corrosion-Resistant Electromagnetic Wave Absorption

The modulation of transport properties in ceramic-based semiconductors can be used to optimize the electromagnetic response mechanism and performance. A semiconductor ceramic foam interlayer wall (SCFW) is designed by a physical vapor deposition method. The interlayer structural SCFW is composed of semiconductor-insulator-semiconductor layers, incorporating a composite system of SiC, Al4.8Si1.2O9.6, and Al2O3. Moreover, the hierarchical network structure of the foam interlayer wall is controlled by the pyrolysis-deposition kinetic process. Electrons and holes are transported through the heterojunctions between SiC and Al4.8Si1.2O9.6, achieving effective charge relaxation. The Al2O3 matrix provides lightweight properties (density of 0.967 g cm−3), while the hierarchical network structure determines the excellent electromagnetic wave (EMW) absorption performance of the SCFW, with an effective bandwidth up to 14.8 GHz under electromagnetic response (minimum reflection loss RLmin = −50.6 dB). the SCFW has been proven to exhibit corrosion resistance and thermal insulation properties, with a thermal conductivity up to 0.025 W m−1 K−1. This study provides valuable insights into the structural design and dielectric property optimization of ceramic-based semiconductor nanocomposites, which leads to strong polarization loss, opening new avenues for the application of EMW absorbers, and the EMW absorption mechanism of ceramics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信