多机组换热器全局优化基本设计

IF 3.5 3区 工程技术 Q2 ENGINEERING, CHEMICAL
AIChE Journal Pub Date : 2025-04-01 DOI:10.1002/aic.18838
Miguel J. Bagajewicz, Andre L. M. Nahes, Eduardo M. Queiroz, Diego G. Oliva, Javier A. Francesconi, André L. H. Costa
{"title":"多机组换热器全局优化基本设计","authors":"Miguel J. Bagajewicz, Andre L. M. Nahes, Eduardo M. Queiroz, Diego G. Oliva, Javier A. Francesconi, André L. H. Costa","doi":"10.1002/aic.18838","DOIUrl":null,"url":null,"abstract":"A novel approach (Complete Set Trimming) to address the globally optimal design of multiple-unit heat exchangers (Shell and Tube, Double Pipe, Plate, etc.) is presented. Three arrangements: Series, Parallel, Series–Parallel, and Parallel–Series, for minimizing area, CAPEX, or total annualized cost are considered. The geometry of all (equal) units is determined together with the number of units and the fluid allocation. The article illustrates the need to minimize CAPEX explicitly instead of using the minimization of Area as its proxy objective function. In addition, the influence of available pressure drop in the final optimal design is also discussed. Finally, the article shows that solutions obtained by minimizing the Total Annualized Cost (TAC) render different solutions than those obtained by minimizing CAPEX, indicating that pumping costs matter, depending on the balance between operational and capital costs.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"23 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Globally optimal basic design of multiple-unit heat exchangers\",\"authors\":\"Miguel J. Bagajewicz, Andre L. M. Nahes, Eduardo M. Queiroz, Diego G. Oliva, Javier A. Francesconi, André L. H. Costa\",\"doi\":\"10.1002/aic.18838\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel approach (Complete Set Trimming) to address the globally optimal design of multiple-unit heat exchangers (Shell and Tube, Double Pipe, Plate, etc.) is presented. Three arrangements: Series, Parallel, Series–Parallel, and Parallel–Series, for minimizing area, CAPEX, or total annualized cost are considered. The geometry of all (equal) units is determined together with the number of units and the fluid allocation. The article illustrates the need to minimize CAPEX explicitly instead of using the minimization of Area as its proxy objective function. In addition, the influence of available pressure drop in the final optimal design is also discussed. Finally, the article shows that solutions obtained by minimizing the Total Annualized Cost (TAC) render different solutions than those obtained by minimizing CAPEX, indicating that pumping costs matter, depending on the balance between operational and capital costs.\",\"PeriodicalId\":120,\"journal\":{\"name\":\"AIChE Journal\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIChE Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/aic.18838\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIChE Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/aic.18838","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种解决多机组换热器(管壳式、双管式、板式等)全局优化设计的新方法(成套修整)。三种安排:串联,并联,串联-并联和并联-串联,以最大限度地减少面积,资本支出或年化总成本。所有(相等)单元的几何形状与单元数量和流体分配一起确定。本文说明了明确地最小化资本支出的必要性,而不是使用面积最小化作为其代理目标函数。此外,还讨论了有效压降对最终优化设计的影响。最后,文章表明,通过最小化年化总成本(TAC)获得的解决方案与最小化CAPEX获得的解决方案不同,这表明泵送成本很重要,取决于运营成本和资本成本之间的平衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Globally optimal basic design of multiple-unit heat exchangers
A novel approach (Complete Set Trimming) to address the globally optimal design of multiple-unit heat exchangers (Shell and Tube, Double Pipe, Plate, etc.) is presented. Three arrangements: Series, Parallel, Series–Parallel, and Parallel–Series, for minimizing area, CAPEX, or total annualized cost are considered. The geometry of all (equal) units is determined together with the number of units and the fluid allocation. The article illustrates the need to minimize CAPEX explicitly instead of using the minimization of Area as its proxy objective function. In addition, the influence of available pressure drop in the final optimal design is also discussed. Finally, the article shows that solutions obtained by minimizing the Total Annualized Cost (TAC) render different solutions than those obtained by minimizing CAPEX, indicating that pumping costs matter, depending on the balance between operational and capital costs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
AIChE Journal
AIChE Journal 工程技术-工程:化工
CiteScore
7.10
自引率
10.80%
发文量
411
审稿时长
3.6 months
期刊介绍: The AIChE Journal is the premier research monthly in chemical engineering and related fields. This peer-reviewed and broad-based journal reports on the most important and latest technological advances in core areas of chemical engineering as well as in other relevant engineering disciplines. To keep abreast with the progressive outlook of the profession, the Journal has been expanding the scope of its editorial contents to include such fast developing areas as biotechnology, electrochemical engineering, and environmental engineering. The AIChE Journal is indeed the global communications vehicle for the world-renowned researchers to exchange top-notch research findings with one another. Subscribing to the AIChE Journal is like having immediate access to nine topical journals in the field. Articles are categorized according to the following topical areas: Biomolecular Engineering, Bioengineering, Biochemicals, Biofuels, and Food Inorganic Materials: Synthesis and Processing Particle Technology and Fluidization Process Systems Engineering Reaction Engineering, Kinetics and Catalysis Separations: Materials, Devices and Processes Soft Materials: Synthesis, Processing and Products Thermodynamics and Molecular-Scale Phenomena Transport Phenomena and Fluid Mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信