硫缺陷工程控制Li2S晶向无枝晶锂金属电池方向发展

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Jin-Xia Lin, Peng Dai, Sheng-Nan Hu, Shiyuan Zhou, Gyeong-Su Park, Chen-Guang Shi, Jun-Fei Shen, Yu-Xiang Xie, Wei-Chen Zheng, Hui Chen, Shi-Shi Liu, Hua-Yu Huang, Ying Zhong, Jun-Tao Li, Rena Oh, Xiaoyang Jerry Huang, Wen-Feng Lin, Ling Huang, Shi-Gang Sun
{"title":"硫缺陷工程控制Li2S晶向无枝晶锂金属电池方向发展","authors":"Jin-Xia Lin, Peng Dai, Sheng-Nan Hu, Shiyuan Zhou, Gyeong-Su Park, Chen-Guang Shi, Jun-Fei Shen, Yu-Xiang Xie, Wei-Chen Zheng, Hui Chen, Shi-Shi Liu, Hua-Yu Huang, Ying Zhong, Jun-Tao Li, Rena Oh, Xiaoyang Jerry Huang, Wen-Feng Lin, Ling Huang, Shi-Gang Sun","doi":"10.1038/s41467-025-57572-5","DOIUrl":null,"url":null,"abstract":"<p>Controlling nucleation and growth of Li is crucial to avoid dendrite formation for practical applications of lithium metal batteries. Li<sub>2</sub>S has been exemplified to promote Li transport, but its crystal orientation significantly influences the Li deposition behaviors. Here, we investigate the interactions between Li and various surface structures of Li<sub>2</sub>S, and reveal that the Li<sub>2</sub>S(111) plane exhibits the highest Li affinity and the lowest diffusion barrier, leading to dense Li deposition. Using sulfur defect engineering for Li<sub>2</sub>S crystal orientation control, we construct three-dimensional vertically oriented Li<sub>2</sub>S(111)@Cu nanorod arrays as a Li metal electrode substrate and identify a substrate-dependent Li nucleation process and a facet-dependent growth mode. Furthermore, we demonstrate the versatility of the Li<sub>2</sub>S(111)@Cu substrate when paired with two positive electrodes: achieving an initial discharge capacity of 138.8 mAh g<sup>–1</sup> with 88% capacity retention after 400 cycles at 83.5 mA g<sup>–1</sup> with LiFePO<sub>4</sub>, and an initial discharge capacity of 181 mAh g<sup>–1</sup> with 80% capacity retention after 160 cycles at 60 mA g<sup>–1</sup> with commercial LiNi<sub>0.8</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub>O<sub>2</sub> positive electrode (4 mAh cm<sup>–2</sup>).</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"22 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sulfur defect engineering controls Li2S crystal orientation towards dendrite-free lithium metal batteries\",\"authors\":\"Jin-Xia Lin, Peng Dai, Sheng-Nan Hu, Shiyuan Zhou, Gyeong-Su Park, Chen-Guang Shi, Jun-Fei Shen, Yu-Xiang Xie, Wei-Chen Zheng, Hui Chen, Shi-Shi Liu, Hua-Yu Huang, Ying Zhong, Jun-Tao Li, Rena Oh, Xiaoyang Jerry Huang, Wen-Feng Lin, Ling Huang, Shi-Gang Sun\",\"doi\":\"10.1038/s41467-025-57572-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Controlling nucleation and growth of Li is crucial to avoid dendrite formation for practical applications of lithium metal batteries. Li<sub>2</sub>S has been exemplified to promote Li transport, but its crystal orientation significantly influences the Li deposition behaviors. Here, we investigate the interactions between Li and various surface structures of Li<sub>2</sub>S, and reveal that the Li<sub>2</sub>S(111) plane exhibits the highest Li affinity and the lowest diffusion barrier, leading to dense Li deposition. Using sulfur defect engineering for Li<sub>2</sub>S crystal orientation control, we construct three-dimensional vertically oriented Li<sub>2</sub>S(111)@Cu nanorod arrays as a Li metal electrode substrate and identify a substrate-dependent Li nucleation process and a facet-dependent growth mode. Furthermore, we demonstrate the versatility of the Li<sub>2</sub>S(111)@Cu substrate when paired with two positive electrodes: achieving an initial discharge capacity of 138.8 mAh g<sup>–1</sup> with 88% capacity retention after 400 cycles at 83.5 mA g<sup>–1</sup> with LiFePO<sub>4</sub>, and an initial discharge capacity of 181 mAh g<sup>–1</sup> with 80% capacity retention after 160 cycles at 60 mA g<sup>–1</sup> with commercial LiNi<sub>0.8</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub>O<sub>2</sub> positive electrode (4 mAh cm<sup>–2</sup>).</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-57572-5\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-57572-5","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

在锂金属电池的实际应用中,控制锂的成核和生长是避免枝晶形成的关键。Li2S促进了锂的输运,但其晶体取向对锂的沉积行为有显著影响。本文研究了Li与Li2S不同表面结构之间的相互作用,发现Li2S(111)平面具有最高的Li亲和力和最低的扩散势垒,导致Li密集沉积。利用硫缺陷工程技术控制Li2S晶体取向,构建了三维垂直定向Li2S(111)@Cu纳米棒阵列作为锂金属电极衬底,并确定了衬底依赖的锂成核过程和面依赖的生长模式。此外,我们证明了Li2S(111)@Cu衬底与两个正极搭配时的多功能性:使用LiFePO4在83.5 mA g-1下循环400次后,初始放电容量为138.8 mAh g-1,容量保持率为88%;使用商用LiNi0.8Co0.1Mn0.1O2正极(4 mAh cm-2)在60 mA g-1下循环160次后,初始放电容量为181 mAh g-1,容量保持率为80%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Sulfur defect engineering controls Li2S crystal orientation towards dendrite-free lithium metal batteries

Sulfur defect engineering controls Li2S crystal orientation towards dendrite-free lithium metal batteries

Controlling nucleation and growth of Li is crucial to avoid dendrite formation for practical applications of lithium metal batteries. Li2S has been exemplified to promote Li transport, but its crystal orientation significantly influences the Li deposition behaviors. Here, we investigate the interactions between Li and various surface structures of Li2S, and reveal that the Li2S(111) plane exhibits the highest Li affinity and the lowest diffusion barrier, leading to dense Li deposition. Using sulfur defect engineering for Li2S crystal orientation control, we construct three-dimensional vertically oriented Li2S(111)@Cu nanorod arrays as a Li metal electrode substrate and identify a substrate-dependent Li nucleation process and a facet-dependent growth mode. Furthermore, we demonstrate the versatility of the Li2S(111)@Cu substrate when paired with two positive electrodes: achieving an initial discharge capacity of 138.8 mAh g–1 with 88% capacity retention after 400 cycles at 83.5 mA g–1 with LiFePO4, and an initial discharge capacity of 181 mAh g–1 with 80% capacity retention after 160 cycles at 60 mA g–1 with commercial LiNi0.8Co0.1Mn0.1O2 positive electrode (4 mAh cm–2).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信