{"title":"烯烃的协同自由基Markovnikov加氢硒化反应","authors":"Gefei Duan, Yunbo Zhu","doi":"10.1002/adsc.202500120","DOIUrl":null,"url":null,"abstract":"Herein, we report a new synergistic radical Markovnikov hydroselenization of alkenes by in‐situ generated selenium cluster that absorbs hydride under mild conditions. In this protocol, a formal “metal hydride” mechanism is proposed, in which the hydrogen atom is added into the alkene, then undergoing SH2 radical substitution to give the dialkyl selenides products that previously are inaccessible. This metal‐free double selenium‐ene reaction enables smoothly the installation of the bioactive Se atom into a remarkably wide scope of aliphatic and aromatic alkenes and pharmaceuticals‐derived alkenes along with high functional groups compatibility.","PeriodicalId":118,"journal":{"name":"Advanced Synthesis & Catalysis","volume":"6 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergistic Radical Markovnikov Hydroselenization of Alkenes\",\"authors\":\"Gefei Duan, Yunbo Zhu\",\"doi\":\"10.1002/adsc.202500120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Herein, we report a new synergistic radical Markovnikov hydroselenization of alkenes by in‐situ generated selenium cluster that absorbs hydride under mild conditions. In this protocol, a formal “metal hydride” mechanism is proposed, in which the hydrogen atom is added into the alkene, then undergoing SH2 radical substitution to give the dialkyl selenides products that previously are inaccessible. This metal‐free double selenium‐ene reaction enables smoothly the installation of the bioactive Se atom into a remarkably wide scope of aliphatic and aromatic alkenes and pharmaceuticals‐derived alkenes along with high functional groups compatibility.\",\"PeriodicalId\":118,\"journal\":{\"name\":\"Advanced Synthesis & Catalysis\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Synthesis & Catalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/adsc.202500120\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Synthesis & Catalysis","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/adsc.202500120","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Synergistic Radical Markovnikov Hydroselenization of Alkenes
Herein, we report a new synergistic radical Markovnikov hydroselenization of alkenes by in‐situ generated selenium cluster that absorbs hydride under mild conditions. In this protocol, a formal “metal hydride” mechanism is proposed, in which the hydrogen atom is added into the alkene, then undergoing SH2 radical substitution to give the dialkyl selenides products that previously are inaccessible. This metal‐free double selenium‐ene reaction enables smoothly the installation of the bioactive Se atom into a remarkably wide scope of aliphatic and aromatic alkenes and pharmaceuticals‐derived alkenes along with high functional groups compatibility.
期刊介绍:
Advanced Synthesis & Catalysis (ASC) is the leading primary journal in organic, organometallic, and applied chemistry.
The high impact of ASC can be attributed to the unique focus of the journal, which publishes exciting new results from academic and industrial labs on efficient, practical, and environmentally friendly organic synthesis. While homogeneous, heterogeneous, organic, and enzyme catalysis are key technologies to achieve green synthesis, significant contributions to the same goal by synthesis design, reaction techniques, flow chemistry, and continuous processing, multiphase catalysis, green solvents, catalyst immobilization, and recycling, separation science, and process development are also featured in ASC. The Aims and Scope can be found in the Notice to Authors or on the first page of the table of contents in every issue.