QCD中一般洛伦兹自旋的四环反常维数:ζ(3)项

IF 9 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
B. A. Kniehl, V. N. Velizhanin
{"title":"QCD中一般洛伦兹自旋的四环反常维数:ζ(3)项","authors":"B. A. Kniehl, V. N. Velizhanin","doi":"10.1103/physrevlett.134.131901","DOIUrl":null,"url":null,"abstract":"We consider the anomalous dimension of the flavor nonsinglet twist-two quark operator of arbitrary Lorentz spin N</a:mi></a:math> at four loops in QCD and construct its contribution proportional to <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:mi>ζ</c:mi><c:mo stretchy=\"false\">(</c:mo><c:mn>3</c:mn><c:mo stretchy=\"false\">)</c:mo></c:math> in analytic form by applying advanced methods of number theory on the available knowledge of low-<g:math xmlns:g=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><g:mi>N</g:mi></g:math> moments. In conjunction with similar results on the <i:math xmlns:i=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><i:mi>ζ</i:mi><i:mo stretchy=\"false\">(</i:mo><i:mn>5</i:mn><i:mo stretchy=\"false\">)</i:mo></i:math> and <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><m:mi>ζ</m:mi><m:mo stretchy=\"false\">(</m:mo><m:mn>4</m:mn><m:mo stretchy=\"false\">)</m:mo></m:math> contributions, this completes our knowledge of the transcendental part of the considered anomalous dimension. This also provides important constraints on the as-yet elusive all-<q:math xmlns:q=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><q:mi>N</q:mi></q:math> form of the rational part. Via Mellin transformation, we thus obtain the exact functional form in <s:math xmlns:s=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><s:mi>x</s:mi></s:math> of the respective piece of the nonsinglet Dokshitzer-Gribov-Lipatov-Altarelli-Parisi splitting function at four loops. This allows us to appreciably reduce the theoretical uncertainty in the approximation of that splitting function otherwise amenable from the first few low-<u:math xmlns:u=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><u:mi>N</u:mi></u:math> moments. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"183 1","pages":""},"PeriodicalIF":9.0000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Four-Loop Anomalous Dimension of Flavor Nonsinglet Twist-Two Operator of General Lorentz Spin in QCD: ζ(3) Term\",\"authors\":\"B. A. Kniehl, V. N. Velizhanin\",\"doi\":\"10.1103/physrevlett.134.131901\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the anomalous dimension of the flavor nonsinglet twist-two quark operator of arbitrary Lorentz spin N</a:mi></a:math> at four loops in QCD and construct its contribution proportional to <c:math xmlns:c=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><c:mi>ζ</c:mi><c:mo stretchy=\\\"false\\\">(</c:mo><c:mn>3</c:mn><c:mo stretchy=\\\"false\\\">)</c:mo></c:math> in analytic form by applying advanced methods of number theory on the available knowledge of low-<g:math xmlns:g=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><g:mi>N</g:mi></g:math> moments. In conjunction with similar results on the <i:math xmlns:i=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><i:mi>ζ</i:mi><i:mo stretchy=\\\"false\\\">(</i:mo><i:mn>5</i:mn><i:mo stretchy=\\\"false\\\">)</i:mo></i:math> and <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><m:mi>ζ</m:mi><m:mo stretchy=\\\"false\\\">(</m:mo><m:mn>4</m:mn><m:mo stretchy=\\\"false\\\">)</m:mo></m:math> contributions, this completes our knowledge of the transcendental part of the considered anomalous dimension. This also provides important constraints on the as-yet elusive all-<q:math xmlns:q=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><q:mi>N</q:mi></q:math> form of the rational part. Via Mellin transformation, we thus obtain the exact functional form in <s:math xmlns:s=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><s:mi>x</s:mi></s:math> of the respective piece of the nonsinglet Dokshitzer-Gribov-Lipatov-Altarelli-Parisi splitting function at four loops. This allows us to appreciably reduce the theoretical uncertainty in the approximation of that splitting function otherwise amenable from the first few low-<u:math xmlns:u=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><u:mi>N</u:mi></u:math> moments. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20069,\"journal\":{\"name\":\"Physical review letters\",\"volume\":\"183 1\",\"pages\":\"\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2025-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical review letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevlett.134.131901\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevlett.134.131901","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了QCD中四个环上任意洛伦兹自旋N的味非单重扭转-二夸克算子的反常维数,并利用现有的低N矩知识,应用数论的先进方法构造了其与ζ(3)成正比的解析形式的贡献。结合关于ζ(5)和ζ(4)贡献的类似结果,这完成了我们对所考虑的异常维的超越部分的认识。这也为迄今为止难以捉摸的有理部分的全n形式提供了重要的约束。通过Mellin变换,我们得到了四个环上的非单重态Dokshitzer-Gribov-Lipatov-Altarelli-Parisi分裂函数各自片段在x上的精确函数形式。这使我们能够明显地减少理论的不确定性,在近似的分裂函数,否则可从前几个低n矩。2025年由美国物理学会出版
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Four-Loop Anomalous Dimension of Flavor Nonsinglet Twist-Two Operator of General Lorentz Spin in QCD: ζ(3) Term
We consider the anomalous dimension of the flavor nonsinglet twist-two quark operator of arbitrary Lorentz spin N at four loops in QCD and construct its contribution proportional to ζ(3) in analytic form by applying advanced methods of number theory on the available knowledge of low-N moments. In conjunction with similar results on the ζ(5) and ζ(4) contributions, this completes our knowledge of the transcendental part of the considered anomalous dimension. This also provides important constraints on the as-yet elusive all-N form of the rational part. Via Mellin transformation, we thus obtain the exact functional form in x of the respective piece of the nonsinglet Dokshitzer-Gribov-Lipatov-Altarelli-Parisi splitting function at four loops. This allows us to appreciably reduce the theoretical uncertainty in the approximation of that splitting function otherwise amenable from the first few low-N moments. Published by the American Physical Society 2025
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical review letters
Physical review letters 物理-物理:综合
CiteScore
16.50
自引率
7.00%
发文量
2673
审稿时长
2.2 months
期刊介绍: Physical review letters(PRL)covers the full range of applied, fundamental, and interdisciplinary physics research topics: General physics, including statistical and quantum mechanics and quantum information Gravitation, astrophysics, and cosmology Elementary particles and fields Nuclear physics Atomic, molecular, and optical physics Nonlinear dynamics, fluid dynamics, and classical optics Plasma and beam physics Condensed matter and materials physics Polymers, soft matter, biological, climate and interdisciplinary physics, including networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信