氨基功能化介孔二氧化硅薄膜作为时空匹配的可降解纳米形貌增强二氧化钛纳米管表面的早期生物活性和成骨作用

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Shimin Du, Liangzhi Du, Huan Liu, Yunxian Liu, Bowen Qin, Lixing He, Xiaofeng Chang, Wen Song, Zhe Li
{"title":"氨基功能化介孔二氧化硅薄膜作为时空匹配的可降解纳米形貌增强二氧化钛纳米管表面的早期生物活性和成骨作用","authors":"Shimin Du, Liangzhi Du, Huan Liu, Yunxian Liu, Bowen Qin, Lixing He, Xiaofeng Chang, Wen Song, Zhe Li","doi":"10.1021/acsami.5c01981","DOIUrl":null,"url":null,"abstract":"Nanotopographic fabrication has been proven to enhance the osteoinductivity of titanium implant surfaces; however, it is difficult for static nanostructures to regulate multiple osteoblast behaviors. Herein, we proposed a novel strategy for further modifying the nanostructured titanium surfaces using degradable nanotopography that was beneficial for specific cellular processes and spatiotemporally matched. In this work, a titania nanotube (TNT) array, known for its strong capability to promote osteogenic differentiation, was employed as the substrate. An oil–water biphase system containing 3-aminopropyl triethoxysilane (APTES) and tetraethyl orthosilicate (TEOS) was utilized to achieve the in situ deposition of amino-functionalized mesoporous silica films on the TNT surface (TNT@AHMS). The numerous mesopores (∼4 nm) and amino groups on AHMS significantly improved the protein adsorption and attachment of rat bone marrow mesenchymal stem cells (rBMSCs). By culturing in an AHMS-conditioned medium, the effects of AHMS in enhancing early cell behavior were observed and initially attributed to the potential synergism of the mesoporous topography and silicon element release (∼18 ppm). Impressively, this effect was maintained even when cells were reseeded on normal cell culture substrates. After 24 h, AHMS was degraded completely, and the degradation products further facilitated the subsequent osteogenic processes on re-exposed TNT, which accounted for robust osteogenesis both <i>in vitro</i> and <i>in vivo</i>. This study demonstrated that AHMS can serve as a degradable nanotopography (like a buffer layer) to accelerate protein adsorption and cell adhesion in a spatiotemporally matched manner, resulting in enhanced early bioactivity and osteogenesis for a well-designed underlying nanotopography without influencing its physicochemical properties.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"6 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Amino-Functionalized Mesoporous Silica Film as a Spatiotemporally Matched Degradable Nanotopography to Enhance Early Bioactivity and Osteogenesis on Titania Nanotube Surfaces\",\"authors\":\"Shimin Du, Liangzhi Du, Huan Liu, Yunxian Liu, Bowen Qin, Lixing He, Xiaofeng Chang, Wen Song, Zhe Li\",\"doi\":\"10.1021/acsami.5c01981\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nanotopographic fabrication has been proven to enhance the osteoinductivity of titanium implant surfaces; however, it is difficult for static nanostructures to regulate multiple osteoblast behaviors. Herein, we proposed a novel strategy for further modifying the nanostructured titanium surfaces using degradable nanotopography that was beneficial for specific cellular processes and spatiotemporally matched. In this work, a titania nanotube (TNT) array, known for its strong capability to promote osteogenic differentiation, was employed as the substrate. An oil–water biphase system containing 3-aminopropyl triethoxysilane (APTES) and tetraethyl orthosilicate (TEOS) was utilized to achieve the in situ deposition of amino-functionalized mesoporous silica films on the TNT surface (TNT@AHMS). The numerous mesopores (∼4 nm) and amino groups on AHMS significantly improved the protein adsorption and attachment of rat bone marrow mesenchymal stem cells (rBMSCs). By culturing in an AHMS-conditioned medium, the effects of AHMS in enhancing early cell behavior were observed and initially attributed to the potential synergism of the mesoporous topography and silicon element release (∼18 ppm). Impressively, this effect was maintained even when cells were reseeded on normal cell culture substrates. After 24 h, AHMS was degraded completely, and the degradation products further facilitated the subsequent osteogenic processes on re-exposed TNT, which accounted for robust osteogenesis both <i>in vitro</i> and <i>in vivo</i>. This study demonstrated that AHMS can serve as a degradable nanotopography (like a buffer layer) to accelerate protein adsorption and cell adhesion in a spatiotemporally matched manner, resulting in enhanced early bioactivity and osteogenesis for a well-designed underlying nanotopography without influencing its physicochemical properties.\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsami.5c01981\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.5c01981","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

纳米形貌加工已被证明可以增强钛种植体表面的骨诱导性;然而,静态纳米结构很难调节成骨细胞的多种行为。在此,我们提出了一种新的策略,利用可降解的纳米形貌进一步修饰纳米结构的钛表面,这有利于特定的细胞过程和时空匹配。在这项工作中,二氧化钛纳米管(TNT)阵列以其强大的促进成骨分化能力作为底物。利用含有3-氨基丙基三乙氧基硅烷(APTES)和正硅酸四乙酯(TEOS)的油水双相体系,在TNT表面原位沉积了氨基功能化介孔硅膜(TNT@AHMS)。AHMS上大量的介孔(~ 4 nm)和氨基显著改善了大鼠骨髓间充质干细胞(rBMSCs)对蛋白质的吸附和附着。通过在AHMS条件培养基中培养,观察到AHMS对增强早期细胞行为的影响,并初步归因于介孔形貌和硅元素释放(~ 18 ppm)的潜在协同作用。令人印象深刻的是,即使将细胞重新接种到正常细胞培养基质上,这种效果也保持不变。24 h后,AHMS被完全降解,降解产物进一步促进了再暴露的TNT的后续成骨过程,这在体外和体内都具有强大的成骨作用。本研究表明,AHMS可以作为一种可降解的纳米形貌(如缓冲层),以一种时空匹配的方式加速蛋白质吸附和细胞粘附,从而提高设计良好的底层纳米形貌的早期生物活性和成骨性,而不影响其物理化学性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Amino-Functionalized Mesoporous Silica Film as a Spatiotemporally Matched Degradable Nanotopography to Enhance Early Bioactivity and Osteogenesis on Titania Nanotube Surfaces

Amino-Functionalized Mesoporous Silica Film as a Spatiotemporally Matched Degradable Nanotopography to Enhance Early Bioactivity and Osteogenesis on Titania Nanotube Surfaces
Nanotopographic fabrication has been proven to enhance the osteoinductivity of titanium implant surfaces; however, it is difficult for static nanostructures to regulate multiple osteoblast behaviors. Herein, we proposed a novel strategy for further modifying the nanostructured titanium surfaces using degradable nanotopography that was beneficial for specific cellular processes and spatiotemporally matched. In this work, a titania nanotube (TNT) array, known for its strong capability to promote osteogenic differentiation, was employed as the substrate. An oil–water biphase system containing 3-aminopropyl triethoxysilane (APTES) and tetraethyl orthosilicate (TEOS) was utilized to achieve the in situ deposition of amino-functionalized mesoporous silica films on the TNT surface (TNT@AHMS). The numerous mesopores (∼4 nm) and amino groups on AHMS significantly improved the protein adsorption and attachment of rat bone marrow mesenchymal stem cells (rBMSCs). By culturing in an AHMS-conditioned medium, the effects of AHMS in enhancing early cell behavior were observed and initially attributed to the potential synergism of the mesoporous topography and silicon element release (∼18 ppm). Impressively, this effect was maintained even when cells were reseeded on normal cell culture substrates. After 24 h, AHMS was degraded completely, and the degradation products further facilitated the subsequent osteogenic processes on re-exposed TNT, which accounted for robust osteogenesis both in vitro and in vivo. This study demonstrated that AHMS can serve as a degradable nanotopography (like a buffer layer) to accelerate protein adsorption and cell adhesion in a spatiotemporally matched manner, resulting in enhanced early bioactivity and osteogenesis for a well-designed underlying nanotopography without influencing its physicochemical properties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信