碱金属碳酸盐对高效全无机钙钛矿太阳能电池埋藏界面的精炼

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Hao Chen, Yuanyuan Zhao, Liqiang Bian, Yusheng Cao, Linde Li, Yan Zhang, Jialong Duan, Qiyao Guo, Qiang Zhang, Qunwei Tang
{"title":"碱金属碳酸盐对高效全无机钙钛矿太阳能电池埋藏界面的精炼","authors":"Hao Chen, Yuanyuan Zhao, Liqiang Bian, Yusheng Cao, Linde Li, Yan Zhang, Jialong Duan, Qiyao Guo, Qiang Zhang, Qunwei Tang","doi":"10.1021/acsami.5c01359","DOIUrl":null,"url":null,"abstract":"The buried interface plays a critical role in determining both the efficiency and stability of perovskite solar cells (PSCs). However, defect states and energy level misalignment at the SnO<sub>2</sub>/perovskite interface can lead to significant charge recombination, severely limiting device performance. Herein, multifunctional interface modifiers based on alkali metal carbonates are introduced for carbon-based CsPbBr<sub>3</sub> PSCs. The CO<sub>3</sub><sup>2–</sup> anions not only passivate oxygen vacancy (O<sub>V</sub>) defects and undercoordinated Sn<sup>4+</sup> ions on the SnO<sub>2</sub> surface to enhance electron transfer but also passivate undercoordinated Pb<sup>2+</sup> ions at the perovskite interface, improving the overall quality of the perovskite film. Additionally, the alkali cations were found to diffuse into the perovskite bulk, enhancing crystal quality and suppressing nonradiative recombination. By leveraging this multifaceted interface engineering approach, a champion CsPbBr<sub>3</sub> PSC achieved an impressive PCE of 10.70%. Importantly, the unencapsulated devices maintain 85% of initial efficiency under high humidity (85% RH) and heat (85 °C) over 50 days.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"11 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Refining the Buried Interface via Alkali Metal Carbonate for Efficient All-Inorganic Perovskite Solar Cells\",\"authors\":\"Hao Chen, Yuanyuan Zhao, Liqiang Bian, Yusheng Cao, Linde Li, Yan Zhang, Jialong Duan, Qiyao Guo, Qiang Zhang, Qunwei Tang\",\"doi\":\"10.1021/acsami.5c01359\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The buried interface plays a critical role in determining both the efficiency and stability of perovskite solar cells (PSCs). However, defect states and energy level misalignment at the SnO<sub>2</sub>/perovskite interface can lead to significant charge recombination, severely limiting device performance. Herein, multifunctional interface modifiers based on alkali metal carbonates are introduced for carbon-based CsPbBr<sub>3</sub> PSCs. The CO<sub>3</sub><sup>2–</sup> anions not only passivate oxygen vacancy (O<sub>V</sub>) defects and undercoordinated Sn<sup>4+</sup> ions on the SnO<sub>2</sub> surface to enhance electron transfer but also passivate undercoordinated Pb<sup>2+</sup> ions at the perovskite interface, improving the overall quality of the perovskite film. Additionally, the alkali cations were found to diffuse into the perovskite bulk, enhancing crystal quality and suppressing nonradiative recombination. By leveraging this multifaceted interface engineering approach, a champion CsPbBr<sub>3</sub> PSC achieved an impressive PCE of 10.70%. Importantly, the unencapsulated devices maintain 85% of initial efficiency under high humidity (85% RH) and heat (85 °C) over 50 days.\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsami.5c01359\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.5c01359","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

埋藏界面对钙钛矿太阳能电池(PSCs)的效率和稳定性起着至关重要的作用。然而,SnO2/钙钛矿界面处的缺陷状态和能级错位会导致显著的电荷复合,严重限制器件性能。本文介绍了基于碱金属碳酸盐的碳基CsPbBr3聚酰亚胺多功能界面改性剂。CO32 -阴离子不仅钝化了SnO2表面的氧空位(OV)缺陷和欠配位的Sn4+离子,增强了电子转移,而且钝化了钙钛矿界面处的欠配位Pb2+离子,提高了钙钛矿膜的整体质量。此外,碱离子扩散到钙钛矿体中,提高了晶体质量,抑制了非辐射复合。通过利用这种多面接口工程方法,冠军CsPbBr3 PSC实现了令人印象深刻的10.70%的PCE。重要的是,未封装的设备在高湿(85% RH)和高温(85°C)下保持85%的初始效率超过50天。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Refining the Buried Interface via Alkali Metal Carbonate for Efficient All-Inorganic Perovskite Solar Cells

Refining the Buried Interface via Alkali Metal Carbonate for Efficient All-Inorganic Perovskite Solar Cells
The buried interface plays a critical role in determining both the efficiency and stability of perovskite solar cells (PSCs). However, defect states and energy level misalignment at the SnO2/perovskite interface can lead to significant charge recombination, severely limiting device performance. Herein, multifunctional interface modifiers based on alkali metal carbonates are introduced for carbon-based CsPbBr3 PSCs. The CO32– anions not only passivate oxygen vacancy (OV) defects and undercoordinated Sn4+ ions on the SnO2 surface to enhance electron transfer but also passivate undercoordinated Pb2+ ions at the perovskite interface, improving the overall quality of the perovskite film. Additionally, the alkali cations were found to diffuse into the perovskite bulk, enhancing crystal quality and suppressing nonradiative recombination. By leveraging this multifaceted interface engineering approach, a champion CsPbBr3 PSC achieved an impressive PCE of 10.70%. Importantly, the unencapsulated devices maintain 85% of initial efficiency under high humidity (85% RH) and heat (85 °C) over 50 days.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信