{"title":"载入天然药物单宁酸的聚乳酸乙二醛(PLGA)微球在肿瘤治疗中的应用。","authors":"Yiqiao Zhao, Yixuan Huang, Chaofan Chen, Chaoyu Cai, Xin Liu, Xiaohong Jiang, Aliaksandr Rahachou","doi":"10.1088/1748-605X/adc6d7","DOIUrl":null,"url":null,"abstract":"<p><p>Although conventional chemotherapeutic drugs exhibit broad-spectrum antitumor efficacy, their toxic effects on normal cells cannot be ignored, and there is an urgent need to develop novel drugs to improve therapeutic efficacy and reduce side effects. In this study, we prepared PLGA/TA microspheres with TA as the target drug and PLGA as the carrier, and evaluated their physicochemical properties, including particle size, morphology, and release behavior, with the aim of exploring the potential of PLGA/TA microspheres for tumor therapy. The results of RNA sequencing showed that PLGA/TA microspheres may act on tumor cells mainly through the pathway of PI3K-Akt, and do not interfere with the synthesis of DNA directly. Overall, PLGA/TA microspheres, as a novel drug delivery system, showed good anti-tumor potential and provided new ideas and directions for cancer therapy.</p>","PeriodicalId":72389,"journal":{"name":"Biomedical materials (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of PLGA microspheres loaded with natural drug tannins in tumor treatment.\",\"authors\":\"Yiqiao Zhao, Yixuan Huang, Chaofan Chen, Chaoyu Cai, Xin Liu, Xiaohong Jiang, Aliaksandr Rahachou\",\"doi\":\"10.1088/1748-605X/adc6d7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Although conventional chemotherapeutic drugs exhibit broad-spectrum antitumor efficacy, their toxic effects on normal cells cannot be ignored, and there is an urgent need to develop novel drugs to improve therapeutic efficacy and reduce side effects. In this study, we prepared PLGA/TA microspheres with TA as the target drug and PLGA as the carrier, and evaluated their physicochemical properties, including particle size, morphology, and release behavior, with the aim of exploring the potential of PLGA/TA microspheres for tumor therapy. The results of RNA sequencing showed that PLGA/TA microspheres may act on tumor cells mainly through the pathway of PI3K-Akt, and do not interfere with the synthesis of DNA directly. Overall, PLGA/TA microspheres, as a novel drug delivery system, showed good anti-tumor potential and provided new ideas and directions for cancer therapy.</p>\",\"PeriodicalId\":72389,\"journal\":{\"name\":\"Biomedical materials (Bristol, England)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical materials (Bristol, England)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1748-605X/adc6d7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical materials (Bristol, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1748-605X/adc6d7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Application of PLGA microspheres loaded with natural drug tannins in tumor treatment.
Although conventional chemotherapeutic drugs exhibit broad-spectrum antitumor efficacy, their toxic effects on normal cells cannot be ignored, and there is an urgent need to develop novel drugs to improve therapeutic efficacy and reduce side effects. In this study, we prepared PLGA/TA microspheres with TA as the target drug and PLGA as the carrier, and evaluated their physicochemical properties, including particle size, morphology, and release behavior, with the aim of exploring the potential of PLGA/TA microspheres for tumor therapy. The results of RNA sequencing showed that PLGA/TA microspheres may act on tumor cells mainly through the pathway of PI3K-Akt, and do not interfere with the synthesis of DNA directly. Overall, PLGA/TA microspheres, as a novel drug delivery system, showed good anti-tumor potential and provided new ideas and directions for cancer therapy.