{"title":"Klotho 可通过 Nrf2/HO-1 途径缓解氧化应激和线粒体功能障碍,从而减轻草酸钙结晶诱导的肾衰老。","authors":"Yuexian Xu, Jianmin You, Junfeng Yao, Bingbing Hou, Wei Wang, Zongyao Hao","doi":"10.1007/s00240-025-01734-z","DOIUrl":null,"url":null,"abstract":"<p><p>Klotho is an antiaging protein that is primarily secreted by the kidneys. This study aimed to explore the protective effects of Klotho against calcium oxalate (CaOx) crystal-induced renal aging and the underlying mechanisms involved. We established a mouse model of CaOx crystal deposition via the intraperitoneal injection of glyoxylate (Gly) and constructed an in vitro model by stimulating HK2 cells with calcium oxalate monohydrate (COM). Renal aging levels were assessed through β-galactosidase (SA-β-gal) staining and the detection of senescence-associated markers. By overexpressing Klotho both in vitro and in vivo, we examined oxidative stress, mitochondrial function, and renal aging levels. We then evaluated the role of Nrf2/HO-1 signalling pathway-mediated oxidative stress in CaOx crystal-induced renal aging by applying the oxidative stress scavenger N-acetylcysteine (NAC) and overexpressing or inhibiting Nrf2 in HK2 cells. We subsequently overexpressed Klotho while inhibiting Nrf2 to confirm that Klotho exerts its protective effects through the Nrf2/HO-1 pathway. Finally, we measured the methylation levels of the Klotho promoter and assessed the degree of renal aging induced by CaOx crystals after the inhibition of Klotho DNA methylation. We found that the overexpression of Klotho alleviated CaOx crystal-induced oxidative stress and mitochondrial dysfunction, thereby reducing renal aging. NAC mitigated CaOx crystal-induced renal aging. The overexpression of Nrf2 alleviated CaOx crystal-induced oxidative stress and mitochondrial dysfunction, thus reducing renal aging, whereas the knockdown of Nrf2 exacerbated CaOx crystal-induced oxidative stress and mitochondrial dysfunction, leading to more severe renal aging. The combination of Klotho overexpression and Nrf2 knockdown reversed the protective effects of Klotho. CaOx crystals induced an increase in the DNA methylation levels of Klotho in the kidneys, and the inhibition of DNA methylation alleviated CaOx-induced renal aging. This study revealed that Klotho plays a crucial role in calcium oxalate crystal-induced kidney senescence by influencing kidney oxidative stress and mitochondrial function through the Nrf2/HO-1 pathway.</p>","PeriodicalId":23411,"journal":{"name":"Urolithiasis","volume":"53 1","pages":"61"},"PeriodicalIF":2.0000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Klotho alleviates oxidative stress and mitochondrial dysfunction through the Nrf2/HO-1 pathway, thereby reducing renal senescence induced by calcium oxalate crystals.\",\"authors\":\"Yuexian Xu, Jianmin You, Junfeng Yao, Bingbing Hou, Wei Wang, Zongyao Hao\",\"doi\":\"10.1007/s00240-025-01734-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Klotho is an antiaging protein that is primarily secreted by the kidneys. This study aimed to explore the protective effects of Klotho against calcium oxalate (CaOx) crystal-induced renal aging and the underlying mechanisms involved. We established a mouse model of CaOx crystal deposition via the intraperitoneal injection of glyoxylate (Gly) and constructed an in vitro model by stimulating HK2 cells with calcium oxalate monohydrate (COM). Renal aging levels were assessed through β-galactosidase (SA-β-gal) staining and the detection of senescence-associated markers. By overexpressing Klotho both in vitro and in vivo, we examined oxidative stress, mitochondrial function, and renal aging levels. We then evaluated the role of Nrf2/HO-1 signalling pathway-mediated oxidative stress in CaOx crystal-induced renal aging by applying the oxidative stress scavenger N-acetylcysteine (NAC) and overexpressing or inhibiting Nrf2 in HK2 cells. We subsequently overexpressed Klotho while inhibiting Nrf2 to confirm that Klotho exerts its protective effects through the Nrf2/HO-1 pathway. Finally, we measured the methylation levels of the Klotho promoter and assessed the degree of renal aging induced by CaOx crystals after the inhibition of Klotho DNA methylation. We found that the overexpression of Klotho alleviated CaOx crystal-induced oxidative stress and mitochondrial dysfunction, thereby reducing renal aging. NAC mitigated CaOx crystal-induced renal aging. The overexpression of Nrf2 alleviated CaOx crystal-induced oxidative stress and mitochondrial dysfunction, thus reducing renal aging, whereas the knockdown of Nrf2 exacerbated CaOx crystal-induced oxidative stress and mitochondrial dysfunction, leading to more severe renal aging. The combination of Klotho overexpression and Nrf2 knockdown reversed the protective effects of Klotho. CaOx crystals induced an increase in the DNA methylation levels of Klotho in the kidneys, and the inhibition of DNA methylation alleviated CaOx-induced renal aging. This study revealed that Klotho plays a crucial role in calcium oxalate crystal-induced kidney senescence by influencing kidney oxidative stress and mitochondrial function through the Nrf2/HO-1 pathway.</p>\",\"PeriodicalId\":23411,\"journal\":{\"name\":\"Urolithiasis\",\"volume\":\"53 1\",\"pages\":\"61\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Urolithiasis\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00240-025-01734-z\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"UROLOGY & NEPHROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Urolithiasis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00240-025-01734-z","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"UROLOGY & NEPHROLOGY","Score":null,"Total":0}
Klotho alleviates oxidative stress and mitochondrial dysfunction through the Nrf2/HO-1 pathway, thereby reducing renal senescence induced by calcium oxalate crystals.
Klotho is an antiaging protein that is primarily secreted by the kidneys. This study aimed to explore the protective effects of Klotho against calcium oxalate (CaOx) crystal-induced renal aging and the underlying mechanisms involved. We established a mouse model of CaOx crystal deposition via the intraperitoneal injection of glyoxylate (Gly) and constructed an in vitro model by stimulating HK2 cells with calcium oxalate monohydrate (COM). Renal aging levels were assessed through β-galactosidase (SA-β-gal) staining and the detection of senescence-associated markers. By overexpressing Klotho both in vitro and in vivo, we examined oxidative stress, mitochondrial function, and renal aging levels. We then evaluated the role of Nrf2/HO-1 signalling pathway-mediated oxidative stress in CaOx crystal-induced renal aging by applying the oxidative stress scavenger N-acetylcysteine (NAC) and overexpressing or inhibiting Nrf2 in HK2 cells. We subsequently overexpressed Klotho while inhibiting Nrf2 to confirm that Klotho exerts its protective effects through the Nrf2/HO-1 pathway. Finally, we measured the methylation levels of the Klotho promoter and assessed the degree of renal aging induced by CaOx crystals after the inhibition of Klotho DNA methylation. We found that the overexpression of Klotho alleviated CaOx crystal-induced oxidative stress and mitochondrial dysfunction, thereby reducing renal aging. NAC mitigated CaOx crystal-induced renal aging. The overexpression of Nrf2 alleviated CaOx crystal-induced oxidative stress and mitochondrial dysfunction, thus reducing renal aging, whereas the knockdown of Nrf2 exacerbated CaOx crystal-induced oxidative stress and mitochondrial dysfunction, leading to more severe renal aging. The combination of Klotho overexpression and Nrf2 knockdown reversed the protective effects of Klotho. CaOx crystals induced an increase in the DNA methylation levels of Klotho in the kidneys, and the inhibition of DNA methylation alleviated CaOx-induced renal aging. This study revealed that Klotho plays a crucial role in calcium oxalate crystal-induced kidney senescence by influencing kidney oxidative stress and mitochondrial function through the Nrf2/HO-1 pathway.
期刊介绍:
Official Journal of the International Urolithiasis Society
The journal aims to publish original articles in the fields of clinical and experimental investigation only within the sphere of urolithiasis and its related areas of research. The journal covers all aspects of urolithiasis research including the diagnosis, epidemiology, pathogenesis, genetics, clinical biochemistry, open and non-invasive surgical intervention, nephrological investigation, chemistry and prophylaxis of the disorder. The Editor welcomes contributions on topics of interest to urologists, nephrologists, radiologists, clinical biochemists, epidemiologists, nutritionists, basic scientists and nurses working in that field.
Contributions may be submitted as full-length articles or as rapid communications in the form of Letters to the Editor. Articles should be original and should contain important new findings from carefully conducted studies designed to produce statistically significant data. Please note that we no longer publish articles classified as Case Reports. Editorials and review articles may be published by invitation from the Editorial Board. All submissions are peer-reviewed. Through an electronic system for the submission and review of manuscripts, the Editor and Associate Editors aim to make publication accessible as quickly as possible to a large number of readers throughout the world.