单细胞eqtl图谱剖析了自身免疫性疾病基因,并确定了用于治疗的新型药物类别。

IF 11.1 Q1 CELL BIOLOGY
Lida Wang, Havell Markus, Dieyi Chen, Siyuan Chen, Fan Zhang, Shuang Gao, Chachrit Khunsriraksakul, Fang Chen, Nancy Olsen, Galen Foulke, Bibo Jiang, Laura Carrel, Dajiang J Liu
{"title":"单细胞eqtl图谱剖析了自身免疫性疾病基因,并确定了用于治疗的新型药物类别。","authors":"Lida Wang, Havell Markus, Dieyi Chen, Siyuan Chen, Fan Zhang, Shuang Gao, Chachrit Khunsriraksakul, Fang Chen, Nancy Olsen, Galen Foulke, Bibo Jiang, Laura Carrel, Dajiang J Liu","doi":"10.1016/j.xgen.2025.100820","DOIUrl":null,"url":null,"abstract":"<p><p>Most variants identified from genome-wide association studies (GWASs) are non-coding and regulate gene expression. However, many risk loci fail to colocalize with expression quantitative trait loci (eQTLs), potentially due to limited GWAS and eQTL analysis power or cellular heterogeneity. Population-scale single-cell RNA-sequencing (scRNA-seq) datasets are emerging, enabling mapping of eQTLs in different cell types (sc-eQTLs). Compared to eQTL data from bulk tissues (bk-eQTLs), sc-eQTL datasets are smaller. We propose a joint model of bk-eQTLs as a weighted sum of sc-eQTLs (JOBS) from constituent cell types to improve power. Applying JOBS to One1K1K and eQTLGen data, we identify 586% more eQTLs, matching the power of 4× the sample sizes of OneK1K. Integrating sc-eQTLs with GWAS data creates an atlas for 14 immune-mediated disorders, colocalizing 29.9% or 32.2% more loci than using sc-eQTL or bk-eQTL alone. Extending JOBS, we develop a drug-repurposing pipeline and identify novel drugs validated by real-world data.</p>","PeriodicalId":72539,"journal":{"name":"Cell genomics","volume":" ","pages":"100820"},"PeriodicalIF":11.1000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An atlas of single-cell eQTLs dissects autoimmune disease genes and identifies novel drug classes for treatment.\",\"authors\":\"Lida Wang, Havell Markus, Dieyi Chen, Siyuan Chen, Fan Zhang, Shuang Gao, Chachrit Khunsriraksakul, Fang Chen, Nancy Olsen, Galen Foulke, Bibo Jiang, Laura Carrel, Dajiang J Liu\",\"doi\":\"10.1016/j.xgen.2025.100820\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Most variants identified from genome-wide association studies (GWASs) are non-coding and regulate gene expression. However, many risk loci fail to colocalize with expression quantitative trait loci (eQTLs), potentially due to limited GWAS and eQTL analysis power or cellular heterogeneity. Population-scale single-cell RNA-sequencing (scRNA-seq) datasets are emerging, enabling mapping of eQTLs in different cell types (sc-eQTLs). Compared to eQTL data from bulk tissues (bk-eQTLs), sc-eQTL datasets are smaller. We propose a joint model of bk-eQTLs as a weighted sum of sc-eQTLs (JOBS) from constituent cell types to improve power. Applying JOBS to One1K1K and eQTLGen data, we identify 586% more eQTLs, matching the power of 4× the sample sizes of OneK1K. Integrating sc-eQTLs with GWAS data creates an atlas for 14 immune-mediated disorders, colocalizing 29.9% or 32.2% more loci than using sc-eQTL or bk-eQTL alone. Extending JOBS, we develop a drug-repurposing pipeline and identify novel drugs validated by real-world data.</p>\",\"PeriodicalId\":72539,\"journal\":{\"name\":\"Cell genomics\",\"volume\":\" \",\"pages\":\"100820\"},\"PeriodicalIF\":11.1000,\"publicationDate\":\"2025-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell genomics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.xgen.2025.100820\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.xgen.2025.100820","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

从全基因组关联研究(GWASs)中发现的大多数变异是非编码的,并调节基因表达。然而,许多风险位点无法与表达数量性状位点(eQTL)共定位,这可能是由于GWAS和eQTL分析能力有限或细胞异质性所致。群体规模的单细胞rna测序(scRNA-seq)数据集正在出现,能够在不同细胞类型(sc-eQTLs)中绘制eqtl。与来自大块组织的eQTL数据(bk-eQTL)相比,sc-eQTL数据集更小。我们提出了一个bk- eqtl的联合模型,作为来自组成细胞类型的sc- eqtl (JOBS)的加权和,以提高功率。将JOBS应用于One1K1K和eQTLGen数据,我们识别出586%的eqtl,匹配OneK1K样本量的4倍。将sc-eQTL与GWAS数据整合,可创建14种免疫介导疾病的图谱,共定位位点比单独使用sc-eQTL或bk-eQTL多29.9%或32.2%。通过扩展JOBS,我们开发了药物再利用管道,并通过实际数据验证了新药的识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An atlas of single-cell eQTLs dissects autoimmune disease genes and identifies novel drug classes for treatment.

Most variants identified from genome-wide association studies (GWASs) are non-coding and regulate gene expression. However, many risk loci fail to colocalize with expression quantitative trait loci (eQTLs), potentially due to limited GWAS and eQTL analysis power or cellular heterogeneity. Population-scale single-cell RNA-sequencing (scRNA-seq) datasets are emerging, enabling mapping of eQTLs in different cell types (sc-eQTLs). Compared to eQTL data from bulk tissues (bk-eQTLs), sc-eQTL datasets are smaller. We propose a joint model of bk-eQTLs as a weighted sum of sc-eQTLs (JOBS) from constituent cell types to improve power. Applying JOBS to One1K1K and eQTLGen data, we identify 586% more eQTLs, matching the power of 4× the sample sizes of OneK1K. Integrating sc-eQTLs with GWAS data creates an atlas for 14 immune-mediated disorders, colocalizing 29.9% or 32.2% more loci than using sc-eQTL or bk-eQTL alone. Extending JOBS, we develop a drug-repurposing pipeline and identify novel drugs validated by real-world data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信