Anupam Yadav, Rifat Hussain, Madhu Shukla, Jayaprakash B, Rishiv Kalia, S Prince Mary, Chou-Yi Hsu, Manoj Kumar Mishra, Kashif Saleem, Mohammed El-Meligy
{"title":"改进卷积神经网络在脑电图驾驶员睡意检测中的应用。","authors":"Anupam Yadav, Rifat Hussain, Madhu Shukla, Jayaprakash B, Rishiv Kalia, S Prince Mary, Chou-Yi Hsu, Manoj Kumar Mishra, Kashif Saleem, Mohammed El-Meligy","doi":"10.1038/s41598-025-93765-0","DOIUrl":null,"url":null,"abstract":"<p><p>Driver drowsiness is a significant safety concern, contributing to numerous traffic accidents. To address this issue, researchers have explored electroencephalogram (EEG)-based detection systems. Due to the high-dimensional nature of EEG signals and the subtle temporal patterns of drowsiness, there is increasing recognition of the need for deep neural networks (DNNs) to capture the dynamics of drowsy driving better. Meanwhile, optimizing DNNs architectures remains a challenge, as training these models is an NP-hard problem. Meta-heuristic algorithms offer an alternative to traditional gradient-based optimizers for improving DNNs performance. This study investigates the use of two human-inspired algorithms-teaching learning-based optimization (TLBO) and student psychology-based optimization (SPBO)-to optimize convolutional neural networks (CNNs) for EEG-based drowsiness detection. Results demonstrate strong predictive performance for both CNN-TLBO and CNN-SPBO, with area under the curve values of 0.926 and 0.920, respectively. TLBO produced a simpler model with 4,145 parameters, whereas SPBO generated a more complex architecture with 264,065 parameters but completed optimization faster (116 vs. 148 min). Despite minor overfitting, SPBO's efficiency makes it a cost-effective solution. In general, our findings contribute to the advancement of driver monitoring systems and road safety while emphasizing the broader role of meta-heuristic techniques in deep learning optimization.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"10842"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11953301/pdf/","citationCount":"0","resultStr":"{\"title\":\"Enhancing convolutional neural networks in electroencephalogram driver drowsiness detection using human inspired optimizers.\",\"authors\":\"Anupam Yadav, Rifat Hussain, Madhu Shukla, Jayaprakash B, Rishiv Kalia, S Prince Mary, Chou-Yi Hsu, Manoj Kumar Mishra, Kashif Saleem, Mohammed El-Meligy\",\"doi\":\"10.1038/s41598-025-93765-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Driver drowsiness is a significant safety concern, contributing to numerous traffic accidents. To address this issue, researchers have explored electroencephalogram (EEG)-based detection systems. Due to the high-dimensional nature of EEG signals and the subtle temporal patterns of drowsiness, there is increasing recognition of the need for deep neural networks (DNNs) to capture the dynamics of drowsy driving better. Meanwhile, optimizing DNNs architectures remains a challenge, as training these models is an NP-hard problem. Meta-heuristic algorithms offer an alternative to traditional gradient-based optimizers for improving DNNs performance. This study investigates the use of two human-inspired algorithms-teaching learning-based optimization (TLBO) and student psychology-based optimization (SPBO)-to optimize convolutional neural networks (CNNs) for EEG-based drowsiness detection. Results demonstrate strong predictive performance for both CNN-TLBO and CNN-SPBO, with area under the curve values of 0.926 and 0.920, respectively. TLBO produced a simpler model with 4,145 parameters, whereas SPBO generated a more complex architecture with 264,065 parameters but completed optimization faster (116 vs. 148 min). Despite minor overfitting, SPBO's efficiency makes it a cost-effective solution. In general, our findings contribute to the advancement of driver monitoring systems and road safety while emphasizing the broader role of meta-heuristic techniques in deep learning optimization.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"10842\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11953301/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-93765-0\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-93765-0","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Enhancing convolutional neural networks in electroencephalogram driver drowsiness detection using human inspired optimizers.
Driver drowsiness is a significant safety concern, contributing to numerous traffic accidents. To address this issue, researchers have explored electroencephalogram (EEG)-based detection systems. Due to the high-dimensional nature of EEG signals and the subtle temporal patterns of drowsiness, there is increasing recognition of the need for deep neural networks (DNNs) to capture the dynamics of drowsy driving better. Meanwhile, optimizing DNNs architectures remains a challenge, as training these models is an NP-hard problem. Meta-heuristic algorithms offer an alternative to traditional gradient-based optimizers for improving DNNs performance. This study investigates the use of two human-inspired algorithms-teaching learning-based optimization (TLBO) and student psychology-based optimization (SPBO)-to optimize convolutional neural networks (CNNs) for EEG-based drowsiness detection. Results demonstrate strong predictive performance for both CNN-TLBO and CNN-SPBO, with area under the curve values of 0.926 and 0.920, respectively. TLBO produced a simpler model with 4,145 parameters, whereas SPBO generated a more complex architecture with 264,065 parameters but completed optimization faster (116 vs. 148 min). Despite minor overfitting, SPBO's efficiency makes it a cost-effective solution. In general, our findings contribute to the advancement of driver monitoring systems and road safety while emphasizing the broader role of meta-heuristic techniques in deep learning optimization.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.