{"title":"使用外泌体模拟方法的膜靶向免疫原组合物用于开发针对SARS-CoV-2和其他病原体的疫苗。","authors":"Fikret Sahin, Buse Turegun Atasoy, Suleyman Yalcin, Verda Ceylan Bitirim","doi":"10.1038/s41598-025-95503-y","DOIUrl":null,"url":null,"abstract":"<p><p>The COVID-19 pandemic has underscored the urgent need for a vaccine strategy that is safe, effective, rapid, cost-efficient, and scalable for large-scale deployment during widespread infectious outbreaks. Here, we present a new vaccination strategy that meets these critical requirements. The SARS-CoV-2 S protein consists of the S1 and S2 subunits. The S2 subunit acts as the viral cell membrane fusion protein, and mutations in its C-terminal region facilitate the transport of the entire S protein to the cell membrane. When we expressed the SARS-CoV-2 S protein with a deletion of 21 amino acids from its C-terminal region in various cell types, we observed a dense presence of the protein in the cell membrane, as determined by IHC, dot blot, and ELISA. In the cell membrane-SARS-CoV-2 S protein complex, the cell membrane functions as an exosome mimic, carrying protein antigens (S protein) in their most natural form, as no further protocols are used to attach antigens to the membrane. We demonstrate that using the membrane-S protein component as a vaccine yields a more robust and protective immune response, with enhanced safety compared to mRNA-based or inactivated virus-based vaccines against SARS-CoV-2. Additionally, we show that fusing the transmembrane domain of the Vesicular Stomatitis Virus (VSV) G protein with the SARS-CoV-2 S1 protein effectively transports the S1 protein to the cell membrane, similar to SARS-CoV-2 S Δ21. We propose that designing the S2 subunit of the SARS-CoV-2 S protein, or its analogues such as the VSV-G protein, as carriers for fusing bacterial, viral, or tumor proteins with antigenic properties-and transporting them to the cell membrane-could result in a comprehensive vaccination protocol applicable to all bacteria, viruses, and even tumors.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"10899"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11954949/pdf/","citationCount":"0","resultStr":"{\"title\":\"Membrane-targeted immunogenic compositions using exosome mimetic approach for vaccine development against SARS-CoV-2 and other pathogens.\",\"authors\":\"Fikret Sahin, Buse Turegun Atasoy, Suleyman Yalcin, Verda Ceylan Bitirim\",\"doi\":\"10.1038/s41598-025-95503-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The COVID-19 pandemic has underscored the urgent need for a vaccine strategy that is safe, effective, rapid, cost-efficient, and scalable for large-scale deployment during widespread infectious outbreaks. Here, we present a new vaccination strategy that meets these critical requirements. The SARS-CoV-2 S protein consists of the S1 and S2 subunits. The S2 subunit acts as the viral cell membrane fusion protein, and mutations in its C-terminal region facilitate the transport of the entire S protein to the cell membrane. When we expressed the SARS-CoV-2 S protein with a deletion of 21 amino acids from its C-terminal region in various cell types, we observed a dense presence of the protein in the cell membrane, as determined by IHC, dot blot, and ELISA. In the cell membrane-SARS-CoV-2 S protein complex, the cell membrane functions as an exosome mimic, carrying protein antigens (S protein) in their most natural form, as no further protocols are used to attach antigens to the membrane. We demonstrate that using the membrane-S protein component as a vaccine yields a more robust and protective immune response, with enhanced safety compared to mRNA-based or inactivated virus-based vaccines against SARS-CoV-2. Additionally, we show that fusing the transmembrane domain of the Vesicular Stomatitis Virus (VSV) G protein with the SARS-CoV-2 S1 protein effectively transports the S1 protein to the cell membrane, similar to SARS-CoV-2 S Δ21. We propose that designing the S2 subunit of the SARS-CoV-2 S protein, or its analogues such as the VSV-G protein, as carriers for fusing bacterial, viral, or tumor proteins with antigenic properties-and transporting them to the cell membrane-could result in a comprehensive vaccination protocol applicable to all bacteria, viruses, and even tumors.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"10899\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11954949/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-95503-y\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-95503-y","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Membrane-targeted immunogenic compositions using exosome mimetic approach for vaccine development against SARS-CoV-2 and other pathogens.
The COVID-19 pandemic has underscored the urgent need for a vaccine strategy that is safe, effective, rapid, cost-efficient, and scalable for large-scale deployment during widespread infectious outbreaks. Here, we present a new vaccination strategy that meets these critical requirements. The SARS-CoV-2 S protein consists of the S1 and S2 subunits. The S2 subunit acts as the viral cell membrane fusion protein, and mutations in its C-terminal region facilitate the transport of the entire S protein to the cell membrane. When we expressed the SARS-CoV-2 S protein with a deletion of 21 amino acids from its C-terminal region in various cell types, we observed a dense presence of the protein in the cell membrane, as determined by IHC, dot blot, and ELISA. In the cell membrane-SARS-CoV-2 S protein complex, the cell membrane functions as an exosome mimic, carrying protein antigens (S protein) in their most natural form, as no further protocols are used to attach antigens to the membrane. We demonstrate that using the membrane-S protein component as a vaccine yields a more robust and protective immune response, with enhanced safety compared to mRNA-based or inactivated virus-based vaccines against SARS-CoV-2. Additionally, we show that fusing the transmembrane domain of the Vesicular Stomatitis Virus (VSV) G protein with the SARS-CoV-2 S1 protein effectively transports the S1 protein to the cell membrane, similar to SARS-CoV-2 S Δ21. We propose that designing the S2 subunit of the SARS-CoV-2 S protein, or its analogues such as the VSV-G protein, as carriers for fusing bacterial, viral, or tumor proteins with antigenic properties-and transporting them to the cell membrane-could result in a comprehensive vaccination protocol applicable to all bacteria, viruses, and even tumors.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.