{"title":"液晶天幕光学织构图案的卷积神经网络分析。","authors":"J Terroa, M Tasinkevych, C S Dias","doi":"10.1038/s41598-025-89699-2","DOIUrl":null,"url":null,"abstract":"<p><p>Liquid crystals are known for their optical birefringence, a property that gives rise to intricate patterns and colors when viewed in a microscope between crossed polarisers. Resulting images are rich in geometric patterns and serve as valuable fingerprints of the liquid crystal's intrinsic properties. By using machine learning techniques, it is possible to extract from the images information about, e.g., liquid crystal elastic constants, the scalar order parameter, local orientation of the director, etc. Machine learning can also be employed to identify phase transitions and classify different liquid crystalline phases and topological defects. In addition to well studied singular defects such as point or line disclinations, liquid crystals can also host non-singular solitonic defects such as skyrmions, hopfions, and torons. The solitons, with their localised and stable configurations, offer an alternative view into material properties and behaviour of liquid crystals. In this study, we demonstrate that the optical signatures of skyrmions can be utilised effectively in machine learning to predict important system parameters. Our method focuses specifically on the skyrmion-localised regions, reducing significantly the computational cost. By training convolutional neural networks on simulated polarised optical microscopy images of liquid crystal skyrmions, we showcase the ability of trained networks to accurately predict several selected parameters such as the free energy, cholesteric pitch, and strength of applied electric fields. This study highlights the importance of localised topologically arrested order parameter configurations for materials characterisation research empowered by state-of-the-art data science methods, and may pave the way for the development of advanced skyrmion-based applications.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"10921"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11954881/pdf/","citationCount":"0","resultStr":"{\"title\":\"Convolutional neural network analysis of optical texture patterns in liquid-crystal skyrmions.\",\"authors\":\"J Terroa, M Tasinkevych, C S Dias\",\"doi\":\"10.1038/s41598-025-89699-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Liquid crystals are known for their optical birefringence, a property that gives rise to intricate patterns and colors when viewed in a microscope between crossed polarisers. Resulting images are rich in geometric patterns and serve as valuable fingerprints of the liquid crystal's intrinsic properties. By using machine learning techniques, it is possible to extract from the images information about, e.g., liquid crystal elastic constants, the scalar order parameter, local orientation of the director, etc. Machine learning can also be employed to identify phase transitions and classify different liquid crystalline phases and topological defects. In addition to well studied singular defects such as point or line disclinations, liquid crystals can also host non-singular solitonic defects such as skyrmions, hopfions, and torons. The solitons, with their localised and stable configurations, offer an alternative view into material properties and behaviour of liquid crystals. In this study, we demonstrate that the optical signatures of skyrmions can be utilised effectively in machine learning to predict important system parameters. Our method focuses specifically on the skyrmion-localised regions, reducing significantly the computational cost. By training convolutional neural networks on simulated polarised optical microscopy images of liquid crystal skyrmions, we showcase the ability of trained networks to accurately predict several selected parameters such as the free energy, cholesteric pitch, and strength of applied electric fields. This study highlights the importance of localised topologically arrested order parameter configurations for materials characterisation research empowered by state-of-the-art data science methods, and may pave the way for the development of advanced skyrmion-based applications.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"10921\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11954881/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-89699-2\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-89699-2","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Convolutional neural network analysis of optical texture patterns in liquid-crystal skyrmions.
Liquid crystals are known for their optical birefringence, a property that gives rise to intricate patterns and colors when viewed in a microscope between crossed polarisers. Resulting images are rich in geometric patterns and serve as valuable fingerprints of the liquid crystal's intrinsic properties. By using machine learning techniques, it is possible to extract from the images information about, e.g., liquid crystal elastic constants, the scalar order parameter, local orientation of the director, etc. Machine learning can also be employed to identify phase transitions and classify different liquid crystalline phases and topological defects. In addition to well studied singular defects such as point or line disclinations, liquid crystals can also host non-singular solitonic defects such as skyrmions, hopfions, and torons. The solitons, with their localised and stable configurations, offer an alternative view into material properties and behaviour of liquid crystals. In this study, we demonstrate that the optical signatures of skyrmions can be utilised effectively in machine learning to predict important system parameters. Our method focuses specifically on the skyrmion-localised regions, reducing significantly the computational cost. By training convolutional neural networks on simulated polarised optical microscopy images of liquid crystal skyrmions, we showcase the ability of trained networks to accurately predict several selected parameters such as the free energy, cholesteric pitch, and strength of applied electric fields. This study highlights the importance of localised topologically arrested order parameter configurations for materials characterisation research empowered by state-of-the-art data science methods, and may pave the way for the development of advanced skyrmion-based applications.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.