大型联合下水道系统中与SARS-CoV-2和辣椒轻度斑驳病毒废水浓度相关的水文和物理化学参数。

IF 2.4 4区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES
Journal of water and health Pub Date : 2025-03-01 Epub Date: 2025-01-21 DOI:10.2166/wh.2025.352
Luan Nguyen Thanh, Mounia Hachad, Natasha McQuaid, Kateryna Krylova, Loan Nguyen Ha Thanh, Flavia Visentin, Jean-Baptiste Burnet, Fernando Sanchez Quete, Thomas Maere, Alexandra Tsitouras, Peter Vanrolleghem, Dominic Frigon, Stephanie Loeb, Sarah Dorner, Eyerusalem Goitom
{"title":"大型联合下水道系统中与SARS-CoV-2和辣椒轻度斑驳病毒废水浓度相关的水文和物理化学参数。","authors":"Luan Nguyen Thanh, Mounia Hachad, Natasha McQuaid, Kateryna Krylova, Loan Nguyen Ha Thanh, Flavia Visentin, Jean-Baptiste Burnet, Fernando Sanchez Quete, Thomas Maere, Alexandra Tsitouras, Peter Vanrolleghem, Dominic Frigon, Stephanie Loeb, Sarah Dorner, Eyerusalem Goitom","doi":"10.2166/wh.2025.352","DOIUrl":null,"url":null,"abstract":"<p><p>During COVID-19, surveillance of SARS-CoV-2 in wastewater has been a promising tool for tracking viral infection at the community level. However, in addition to the shedding rates within the community, SARS-CoV-2 concentrations in raw wastewater are influenced by several environmental factors. This study investigated the effects of wastewater characteristics on the viral quantification of SARS-CoV-2 and pepper mild mottle virus (PMMoV) for a large wastewater system with combined sewers. Principal component analysis illustrated that water temperature negatively correlates with SARS-CoV-2 and PMMoV in wastewater, but flow rate and EC are highly correlated with SARS-CoV-2 in spring and winter. The normalization using EC enhanced the correlation with clinical data compared to normalization using pH, flow rate, and raw SARS-CoV-2. The normalization using PMMoV reduced the correlation with clinical data. Multiple linear and random forest (RF) applied to predict the concentrations of SARS-CoV-2 in wastewater, given the confirmed cases and physicochemical parameters. RF regression was the best model to predict SARS-CoV-2 in wastewater (R<sup>2</sup>=0.8), with the most important variables being the confirmed cases followed by water temperature. RF model is a potent predictor of the presence of SARS-CoV-2 in wastewater. This enhances the degree of reliability between community outbreaks and SARS-CoV-2 monitoring.</p>","PeriodicalId":17436,"journal":{"name":"Journal of water and health","volume":"23 3","pages":"413-427"},"PeriodicalIF":2.4000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrological and physicochemical parameters associated with SARS-CoV-2 and pepper mild mottle virus wastewater concentrations for a large-combined sewer system.\",\"authors\":\"Luan Nguyen Thanh, Mounia Hachad, Natasha McQuaid, Kateryna Krylova, Loan Nguyen Ha Thanh, Flavia Visentin, Jean-Baptiste Burnet, Fernando Sanchez Quete, Thomas Maere, Alexandra Tsitouras, Peter Vanrolleghem, Dominic Frigon, Stephanie Loeb, Sarah Dorner, Eyerusalem Goitom\",\"doi\":\"10.2166/wh.2025.352\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>During COVID-19, surveillance of SARS-CoV-2 in wastewater has been a promising tool for tracking viral infection at the community level. However, in addition to the shedding rates within the community, SARS-CoV-2 concentrations in raw wastewater are influenced by several environmental factors. This study investigated the effects of wastewater characteristics on the viral quantification of SARS-CoV-2 and pepper mild mottle virus (PMMoV) for a large wastewater system with combined sewers. Principal component analysis illustrated that water temperature negatively correlates with SARS-CoV-2 and PMMoV in wastewater, but flow rate and EC are highly correlated with SARS-CoV-2 in spring and winter. The normalization using EC enhanced the correlation with clinical data compared to normalization using pH, flow rate, and raw SARS-CoV-2. The normalization using PMMoV reduced the correlation with clinical data. Multiple linear and random forest (RF) applied to predict the concentrations of SARS-CoV-2 in wastewater, given the confirmed cases and physicochemical parameters. RF regression was the best model to predict SARS-CoV-2 in wastewater (R<sup>2</sup>=0.8), with the most important variables being the confirmed cases followed by water temperature. RF model is a potent predictor of the presence of SARS-CoV-2 in wastewater. This enhances the degree of reliability between community outbreaks and SARS-CoV-2 monitoring.</p>\",\"PeriodicalId\":17436,\"journal\":{\"name\":\"Journal of water and health\",\"volume\":\"23 3\",\"pages\":\"413-427\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of water and health\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.2166/wh.2025.352\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of water and health","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.2166/wh.2025.352","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/21 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

在2019冠状病毒病期间,监测废水中的SARS-CoV-2已成为在社区层面追踪病毒感染的一种有前途的工具。然而,除了社区内的脱落率外,原始废水中的SARS-CoV-2浓度还受到几个环境因素的影响。本研究以大型污水组合系统为研究对象,研究了污水特性对SARS-CoV-2和辣椒轻度斑驳病毒(PMMoV)病毒定量的影响。主成分分析结果表明,水温与废水中SARS-CoV-2和PMMoV呈负相关,春、冬季流速和EC与SARS-CoV-2呈高度相关。与使用pH值、流速和原始SARS-CoV-2归一化相比,使用EC归一化与临床数据的相关性增强。PMMoV归一化降低了与临床数据的相关性。在给定确诊病例和理化参数的情况下,应用多元线性随机森林(RF)预测废水中SARS-CoV-2的浓度。RF回归是预测废水中SARS-CoV-2的最佳模型(R2=0.8),最重要的变量是确诊病例,其次是水温。RF模型是废水中SARS-CoV-2存在的有效预测因子。这提高了社区疫情与SARS-CoV-2监测之间的可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hydrological and physicochemical parameters associated with SARS-CoV-2 and pepper mild mottle virus wastewater concentrations for a large-combined sewer system.

During COVID-19, surveillance of SARS-CoV-2 in wastewater has been a promising tool for tracking viral infection at the community level. However, in addition to the shedding rates within the community, SARS-CoV-2 concentrations in raw wastewater are influenced by several environmental factors. This study investigated the effects of wastewater characteristics on the viral quantification of SARS-CoV-2 and pepper mild mottle virus (PMMoV) for a large wastewater system with combined sewers. Principal component analysis illustrated that water temperature negatively correlates with SARS-CoV-2 and PMMoV in wastewater, but flow rate and EC are highly correlated with SARS-CoV-2 in spring and winter. The normalization using EC enhanced the correlation with clinical data compared to normalization using pH, flow rate, and raw SARS-CoV-2. The normalization using PMMoV reduced the correlation with clinical data. Multiple linear and random forest (RF) applied to predict the concentrations of SARS-CoV-2 in wastewater, given the confirmed cases and physicochemical parameters. RF regression was the best model to predict SARS-CoV-2 in wastewater (R2=0.8), with the most important variables being the confirmed cases followed by water temperature. RF model is a potent predictor of the presence of SARS-CoV-2 in wastewater. This enhances the degree of reliability between community outbreaks and SARS-CoV-2 monitoring.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of water and health
Journal of water and health 环境科学-环境科学
CiteScore
3.60
自引率
8.70%
发文量
110
审稿时长
18-36 weeks
期刊介绍: Journal of Water and Health is a peer-reviewed journal devoted to the dissemination of information on the health implications and control of waterborne microorganisms and chemical substances in the broadest sense for developing and developed countries worldwide. This is to include microbial toxins, chemical quality and the aesthetic qualities of water.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信