二维铁电单层材料中电极化的物理起源。

IF 2.3 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER
Xiao-Feng Luo, Zhuo-Peng Xia, Jin-Zhu Zhao
{"title":"二维铁电单层材料中电极化的物理起源。","authors":"Xiao-Feng Luo, Zhuo-Peng Xia, Jin-Zhu Zhao","doi":"10.1088/1361-648X/adc6e0","DOIUrl":null,"url":null,"abstract":"<p><p>Over the past decade, a new class of ferroelectric materials with atomic-level thickness, particularly monolayer materials, has been predicted theoretically and confirmed experimentally. These two-dimensional ferroelectric materials, especially those exhibiting finite out-of-plane polarizations, have garnered significant attention in both condensed matter physics and materials science. On one hand, they offer promising avenues for the miniaturization of ferroelectric devices. On the other hand, they reveal novel physical mechanisms that go beyond those found in conventional bulk ferroelectrics, enabling the emergence of out-of-plane polarization under depolarization fields. Recent studies have identified various mechanisms capable of generating out-of-plane polarization in monolayers, a phenomenon previously considered unlikely in traditional bulk materials like ferroelectric perovskites. This review article highlights the recent advancements in understanding two-dimensional ferroelectricity in monolayer candidates. We focus primarily on the exploration of these unique mechanisms, as investigated and rationalized in recent years. Furthermore, we discuss the promising prospects in this emerging field of ferroelectricity and the bright future of two-dimensional monolayer materials.&#xD.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The physical origin of electric polarizations in two dimensional ferroelectric monolayer materials.\",\"authors\":\"Xiao-Feng Luo, Zhuo-Peng Xia, Jin-Zhu Zhao\",\"doi\":\"10.1088/1361-648X/adc6e0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Over the past decade, a new class of ferroelectric materials with atomic-level thickness, particularly monolayer materials, has been predicted theoretically and confirmed experimentally. These two-dimensional ferroelectric materials, especially those exhibiting finite out-of-plane polarizations, have garnered significant attention in both condensed matter physics and materials science. On one hand, they offer promising avenues for the miniaturization of ferroelectric devices. On the other hand, they reveal novel physical mechanisms that go beyond those found in conventional bulk ferroelectrics, enabling the emergence of out-of-plane polarization under depolarization fields. Recent studies have identified various mechanisms capable of generating out-of-plane polarization in monolayers, a phenomenon previously considered unlikely in traditional bulk materials like ferroelectric perovskites. This review article highlights the recent advancements in understanding two-dimensional ferroelectricity in monolayer candidates. We focus primarily on the exploration of these unique mechanisms, as investigated and rationalized in recent years. Furthermore, we discuss the promising prospects in this emerging field of ferroelectricity and the bright future of two-dimensional monolayer materials.&#xD.</p>\",\"PeriodicalId\":16776,\"journal\":{\"name\":\"Journal of Physics: Condensed Matter\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics: Condensed Matter\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-648X/adc6e0\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-648X/adc6e0","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

在过去的十年中,一类新的具有原子级厚度的铁电材料,特别是单层材料,已经在理论和实验上得到了预测和证实。这些二维铁电材料,特别是那些具有有限面外极化的材料,在凝聚态物理和材料科学中都引起了极大的关注。一方面,它们为铁电器件的小型化提供了有希望的途径。另一方面,它们揭示了超越传统块状铁电体的新物理机制,使去极化场下出现面外极化。最近的研究已经确定了能够在单层中产生面外极化的各种机制,这种现象以前被认为不太可能出现在铁电性钙钛矿等传统块状材料中。这篇综述文章重点介绍了单层候选材料中二维铁电性的最新进展。我们主要集中在探索这些独特的机制,作为调查和合理化在最近几年。此外,我们还讨论了铁电这一新兴领域的前景和二维单层材料的光明前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The physical origin of electric polarizations in two dimensional ferroelectric monolayer materials.

Over the past decade, a new class of ferroelectric materials with atomic-level thickness, particularly monolayer materials, has been predicted theoretically and confirmed experimentally. These two-dimensional ferroelectric materials, especially those exhibiting finite out-of-plane polarizations, have garnered significant attention in both condensed matter physics and materials science. On one hand, they offer promising avenues for the miniaturization of ferroelectric devices. On the other hand, they reveal novel physical mechanisms that go beyond those found in conventional bulk ferroelectrics, enabling the emergence of out-of-plane polarization under depolarization fields. Recent studies have identified various mechanisms capable of generating out-of-plane polarization in monolayers, a phenomenon previously considered unlikely in traditional bulk materials like ferroelectric perovskites. This review article highlights the recent advancements in understanding two-dimensional ferroelectricity in monolayer candidates. We focus primarily on the exploration of these unique mechanisms, as investigated and rationalized in recent years. Furthermore, we discuss the promising prospects in this emerging field of ferroelectricity and the bright future of two-dimensional monolayer materials. .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Physics: Condensed Matter
Journal of Physics: Condensed Matter 物理-物理:凝聚态物理
CiteScore
5.30
自引率
7.40%
发文量
1288
审稿时长
2.1 months
期刊介绍: Journal of Physics: Condensed Matter covers the whole of condensed matter physics including soft condensed matter and nanostructures. Papers may report experimental, theoretical and simulation studies. Note that papers must contain fundamental condensed matter science: papers reporting methods of materials preparation or properties of materials without novel condensed matter content will not be accepted.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信