基于机器学习的动静脉瘘狭窄风险预测模型。

IF 2.8 3区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL
Peng Shu, Ling Huang, Shanshan Huo, Jun Qiu, Haitao Bai, Xia Wang, Fang Xu
{"title":"基于机器学习的动静脉瘘狭窄风险预测模型。","authors":"Peng Shu, Ling Huang, Shanshan Huo, Jun Qiu, Haitao Bai, Xia Wang, Fang Xu","doi":"10.1186/s40001-025-02490-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Arteriovenous fistula stenosis is a common complication in hemodialysis patients, yet effective predictive tools are lacking. This study aims to develop an interpretable machine learning model for stenosis risk prediction.</p><p><strong>Methods: </strong>Clinical data from 974 patients (55 features) undergoing arteriovenous fistula dialysis at The Central Hospital of Wuhan (2017-2024) were analyzed retrospectively. The dataset was split into training (70%) and test (30%) sets. Seven models-Random Forest, XGBoost, Support Vector Machine, Logistic Regression, K-Nearest Neighbors, Artificial Neural Network, and Decision Tree-were trained. Performance was evaluated using F1 score, accuracy, specificity, precision, recall, and AUC-ROC. SHAP values identified key predictors in the optimal model.</p><p><strong>Results: </strong>XGBoost achieved the highest AUC (0.829, 95% CI 0.785-0.880). SHAP analysis highlighted seven critical predictors: number of surgeries, prothrombin time activity, lymphocyte count, fistula duration, triglycerides, vitamin B12, and C-reactive protein.</p><p><strong>Conclusion: </strong>The XGBoost model effectively predicts arteriovenous fistula stenosis risk using clinical data. SHAP explanations enhance clinical interpretability, aiding personalized care strategies.</p>","PeriodicalId":11949,"journal":{"name":"European Journal of Medical Research","volume":"30 1","pages":"217"},"PeriodicalIF":2.8000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11954292/pdf/","citationCount":"0","resultStr":"{\"title\":\"Machine learning-based risk prediction model for arteriovenous fistula stenosis.\",\"authors\":\"Peng Shu, Ling Huang, Shanshan Huo, Jun Qiu, Haitao Bai, Xia Wang, Fang Xu\",\"doi\":\"10.1186/s40001-025-02490-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Arteriovenous fistula stenosis is a common complication in hemodialysis patients, yet effective predictive tools are lacking. This study aims to develop an interpretable machine learning model for stenosis risk prediction.</p><p><strong>Methods: </strong>Clinical data from 974 patients (55 features) undergoing arteriovenous fistula dialysis at The Central Hospital of Wuhan (2017-2024) were analyzed retrospectively. The dataset was split into training (70%) and test (30%) sets. Seven models-Random Forest, XGBoost, Support Vector Machine, Logistic Regression, K-Nearest Neighbors, Artificial Neural Network, and Decision Tree-were trained. Performance was evaluated using F1 score, accuracy, specificity, precision, recall, and AUC-ROC. SHAP values identified key predictors in the optimal model.</p><p><strong>Results: </strong>XGBoost achieved the highest AUC (0.829, 95% CI 0.785-0.880). SHAP analysis highlighted seven critical predictors: number of surgeries, prothrombin time activity, lymphocyte count, fistula duration, triglycerides, vitamin B12, and C-reactive protein.</p><p><strong>Conclusion: </strong>The XGBoost model effectively predicts arteriovenous fistula stenosis risk using clinical data. SHAP explanations enhance clinical interpretability, aiding personalized care strategies.</p>\",\"PeriodicalId\":11949,\"journal\":{\"name\":\"European Journal of Medical Research\",\"volume\":\"30 1\",\"pages\":\"217\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11954292/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Medical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s40001-025-02490-x\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Medical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40001-025-02490-x","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

背景:动静脉瘘狭窄是血液透析患者的常见并发症,但缺乏有效的预测工具。本研究旨在开发一种可解释的狭窄风险预测机器学习模型。方法:回顾性分析2017-2024年武汉市中心医院行动静脉瘘透析的974例患者(55个特征)的临床资料。数据集分为训练集(70%)和测试集(30%)。随机森林模型、XGBoost模型、支持向量机模型、逻辑回归模型、k近邻模型、人工神经网络模型和决策树模型进行了训练。使用F1评分、准确性、特异性、精密度、召回率和AUC-ROC对性能进行评估。SHAP值确定了最优模型中的关键预测因子。结果:XGBoost的AUC最高(0.829,95% CI 0.785-0.880)。SHAP分析强调了七个关键的预测因素:手术次数、凝血酶原时间活性、淋巴细胞计数、瘘持续时间、甘油三酯、维生素B12和c反应蛋白。结论:XGBoost模型能有效预测动静脉瘘狭窄风险。SHAP解释提高了临床可解释性,有助于个性化护理策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine learning-based risk prediction model for arteriovenous fistula stenosis.

Background: Arteriovenous fistula stenosis is a common complication in hemodialysis patients, yet effective predictive tools are lacking. This study aims to develop an interpretable machine learning model for stenosis risk prediction.

Methods: Clinical data from 974 patients (55 features) undergoing arteriovenous fistula dialysis at The Central Hospital of Wuhan (2017-2024) were analyzed retrospectively. The dataset was split into training (70%) and test (30%) sets. Seven models-Random Forest, XGBoost, Support Vector Machine, Logistic Regression, K-Nearest Neighbors, Artificial Neural Network, and Decision Tree-were trained. Performance was evaluated using F1 score, accuracy, specificity, precision, recall, and AUC-ROC. SHAP values identified key predictors in the optimal model.

Results: XGBoost achieved the highest AUC (0.829, 95% CI 0.785-0.880). SHAP analysis highlighted seven critical predictors: number of surgeries, prothrombin time activity, lymphocyte count, fistula duration, triglycerides, vitamin B12, and C-reactive protein.

Conclusion: The XGBoost model effectively predicts arteriovenous fistula stenosis risk using clinical data. SHAP explanations enhance clinical interpretability, aiding personalized care strategies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
European Journal of Medical Research
European Journal of Medical Research 医学-医学:研究与实验
CiteScore
3.20
自引率
0.00%
发文量
247
审稿时长
>12 weeks
期刊介绍: European Journal of Medical Research publishes translational and clinical research of international interest across all medical disciplines, enabling clinicians and other researchers to learn about developments and innovations within these disciplines and across the boundaries between disciplines. The journal publishes high quality research and reviews and aims to ensure that the results of all well-conducted research are published, regardless of their outcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信