Tyler Culpepper, Krithika Senthil, Jessica Vlcek, Anthony Hazelton, Mairead K Heavey, Rani S Sellers, Juliane Nguyen, Janelle C Arthur
{"title":"工程益生菌博氏酵母菌减轻小鼠结肠炎相关结直肠癌负担","authors":"Tyler Culpepper, Krithika Senthil, Jessica Vlcek, Anthony Hazelton, Mairead K Heavey, Rani S Sellers, Juliane Nguyen, Janelle C Arthur","doi":"10.1007/s10620-025-09008-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Individuals with inflammatory bowel diseases experience an elevated risk of colorectal cancer driven by chronic inflammation. Current systemic immunosuppressive therapies often cause severe side effects. Live oral biotherapeutics are an emerging treatment modality that directly target the intestines. We have engineered a probiotic Saccharomyces boulardii strain that expresses targeting ligands to bind fibronectin on inflamed mucosa and secretes anti-tumor necrosis factor nanobodies locally to reduce inflammation. We previously demonstrated that engineering S. boulardii to bind fibronectin enhanced colonization and reduced inflammation in a DSS colitis model.</p><p><strong>Aims: </strong>Here, we tested the anti-cancer potential of engineered S. boulardii using a well-established model of IBD-associated CRC, azoxymethane-treated interleukin 10-deficient (AOM/Il10<sup>-/-</sup>) mice. These mice develop inflammation and invasive tumors that model those found in inflammatory bowel disease.</p><p><strong>Methods: </strong>Mice were orally administered engineered S. boulardii at two dosing frequencies, unmodified S. boulardii, or placebo throughout the 18-week model. Colons were harvested for gross, histological, and molecular evaluation for inflammation and tumorigenesis.</p><p><strong>Results: </strong>Histological colon inflammation was reduced by twice weekly dosing of engineered and unmodified S. boulardii. Engineered S. boulardii reduced gross tumor number in a dose-dependent manner, with median tumor counts reduced from 7.5 to 2 per mouse (p < 0.0002 vs. placebo). Unmodified S. boulardii similarly reduced gross tumor number. Colonization studies revealed that engineered S. boulardii failed to colonize for greater time or density vs. unmodified S. boulardii.</p><p><strong>Conclusion: </strong>Together our data indicate that engineering S. boulardii does not reduce its ability to decrease inflammation-associated tumorigenesis, and that further host-binding target optimization is required to enhance colonization and anti-cancer effects.</p>","PeriodicalId":11378,"journal":{"name":"Digestive Diseases and Sciences","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Engineered Probiotic Saccharomyces boulardii Reduces Colitis-Associated Colorectal Cancer Burden in Mice.\",\"authors\":\"Tyler Culpepper, Krithika Senthil, Jessica Vlcek, Anthony Hazelton, Mairead K Heavey, Rani S Sellers, Juliane Nguyen, Janelle C Arthur\",\"doi\":\"10.1007/s10620-025-09008-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Individuals with inflammatory bowel diseases experience an elevated risk of colorectal cancer driven by chronic inflammation. Current systemic immunosuppressive therapies often cause severe side effects. Live oral biotherapeutics are an emerging treatment modality that directly target the intestines. We have engineered a probiotic Saccharomyces boulardii strain that expresses targeting ligands to bind fibronectin on inflamed mucosa and secretes anti-tumor necrosis factor nanobodies locally to reduce inflammation. We previously demonstrated that engineering S. boulardii to bind fibronectin enhanced colonization and reduced inflammation in a DSS colitis model.</p><p><strong>Aims: </strong>Here, we tested the anti-cancer potential of engineered S. boulardii using a well-established model of IBD-associated CRC, azoxymethane-treated interleukin 10-deficient (AOM/Il10<sup>-/-</sup>) mice. These mice develop inflammation and invasive tumors that model those found in inflammatory bowel disease.</p><p><strong>Methods: </strong>Mice were orally administered engineered S. boulardii at two dosing frequencies, unmodified S. boulardii, or placebo throughout the 18-week model. Colons were harvested for gross, histological, and molecular evaluation for inflammation and tumorigenesis.</p><p><strong>Results: </strong>Histological colon inflammation was reduced by twice weekly dosing of engineered and unmodified S. boulardii. Engineered S. boulardii reduced gross tumor number in a dose-dependent manner, with median tumor counts reduced from 7.5 to 2 per mouse (p < 0.0002 vs. placebo). Unmodified S. boulardii similarly reduced gross tumor number. Colonization studies revealed that engineered S. boulardii failed to colonize for greater time or density vs. unmodified S. boulardii.</p><p><strong>Conclusion: </strong>Together our data indicate that engineering S. boulardii does not reduce its ability to decrease inflammation-associated tumorigenesis, and that further host-binding target optimization is required to enhance colonization and anti-cancer effects.</p>\",\"PeriodicalId\":11378,\"journal\":{\"name\":\"Digestive Diseases and Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digestive Diseases and Sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10620-025-09008-9\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GASTROENTEROLOGY & HEPATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digestive Diseases and Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10620-025-09008-9","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
Engineered Probiotic Saccharomyces boulardii Reduces Colitis-Associated Colorectal Cancer Burden in Mice.
Background: Individuals with inflammatory bowel diseases experience an elevated risk of colorectal cancer driven by chronic inflammation. Current systemic immunosuppressive therapies often cause severe side effects. Live oral biotherapeutics are an emerging treatment modality that directly target the intestines. We have engineered a probiotic Saccharomyces boulardii strain that expresses targeting ligands to bind fibronectin on inflamed mucosa and secretes anti-tumor necrosis factor nanobodies locally to reduce inflammation. We previously demonstrated that engineering S. boulardii to bind fibronectin enhanced colonization and reduced inflammation in a DSS colitis model.
Aims: Here, we tested the anti-cancer potential of engineered S. boulardii using a well-established model of IBD-associated CRC, azoxymethane-treated interleukin 10-deficient (AOM/Il10-/-) mice. These mice develop inflammation and invasive tumors that model those found in inflammatory bowel disease.
Methods: Mice were orally administered engineered S. boulardii at two dosing frequencies, unmodified S. boulardii, or placebo throughout the 18-week model. Colons were harvested for gross, histological, and molecular evaluation for inflammation and tumorigenesis.
Results: Histological colon inflammation was reduced by twice weekly dosing of engineered and unmodified S. boulardii. Engineered S. boulardii reduced gross tumor number in a dose-dependent manner, with median tumor counts reduced from 7.5 to 2 per mouse (p < 0.0002 vs. placebo). Unmodified S. boulardii similarly reduced gross tumor number. Colonization studies revealed that engineered S. boulardii failed to colonize for greater time or density vs. unmodified S. boulardii.
Conclusion: Together our data indicate that engineering S. boulardii does not reduce its ability to decrease inflammation-associated tumorigenesis, and that further host-binding target optimization is required to enhance colonization and anti-cancer effects.
期刊介绍:
Digestive Diseases and Sciences publishes high-quality, peer-reviewed, original papers addressing aspects of basic/translational and clinical research in gastroenterology, hepatology, and related fields. This well-illustrated journal features comprehensive coverage of basic pathophysiology, new technological advances, and clinical breakthroughs; insights from prominent academicians and practitioners concerning new scientific developments and practical medical issues; and discussions focusing on the latest changes in local and worldwide social, economic, and governmental policies that affect the delivery of care within the disciplines of gastroenterology and hepatology.