Zhijie Li, Hui Ren, Shuaishuai Tan, Bing Su, Yuchen Wang, Wenwen Ren, Boyang Zhang, Can Song, Rulong Du, Yuchun Gu, Lida Wu, Hongyu Li
{"title":"CircITGA7 的过表达通过 miR-330/BCL11B 轴调控抑制 HCC 的进展。","authors":"Zhijie Li, Hui Ren, Shuaishuai Tan, Bing Su, Yuchen Wang, Wenwen Ren, Boyang Zhang, Can Song, Rulong Du, Yuchun Gu, Lida Wu, Hongyu Li","doi":"10.1186/s12935-025-03714-0","DOIUrl":null,"url":null,"abstract":"<p><p>As a kind of prevalent malignancy globally, hepatocellular carcinoma (HCC) is characterized by significant morbidity and mortality due to the difficulties in early diagnosis and limited treatment options. Circular RNAs (circRNAs) are a type of circular single-stranded RNA molecule formed by the back-splicing of the 5' end and the 3' end of linear RNA, possessing multiple biological functions. In recent years, numerous reports have demonstrated that circRNAs are potential biomarkers and therapeutic targets for HCC. In this study, we found that circITGA7 is significantly downregulated in HCC tissue compared to adjacent non-tumor tissue. Functional experiments such as CCK8, EdU, colony formation and wound healing assays proved that overexpression of circITGA7 can effectively inhibit the proliferation, migration and invasion of HCC cells. Further research found that circITGA7 can inhibit miR-330 to release BCL11B expression, thereby promoting P53 expression, blocking the cell cycle and promoting apoptosis in HCC cells. In addition, circITGA7 can impede the proliferation of HCC cells in vivo. Therefore, circITGA7 is a potential biomarker for the diagnosis of HCC development and a potential target for the treatment of HCC.</p>","PeriodicalId":9385,"journal":{"name":"Cancer Cell International","volume":"25 1","pages":"121"},"PeriodicalIF":5.3000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11954299/pdf/","citationCount":"0","resultStr":"{\"title\":\"CircITGA7 overexpression suppresses HCC progression via miR-330/BCL11B axis regulation.\",\"authors\":\"Zhijie Li, Hui Ren, Shuaishuai Tan, Bing Su, Yuchen Wang, Wenwen Ren, Boyang Zhang, Can Song, Rulong Du, Yuchun Gu, Lida Wu, Hongyu Li\",\"doi\":\"10.1186/s12935-025-03714-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>As a kind of prevalent malignancy globally, hepatocellular carcinoma (HCC) is characterized by significant morbidity and mortality due to the difficulties in early diagnosis and limited treatment options. Circular RNAs (circRNAs) are a type of circular single-stranded RNA molecule formed by the back-splicing of the 5' end and the 3' end of linear RNA, possessing multiple biological functions. In recent years, numerous reports have demonstrated that circRNAs are potential biomarkers and therapeutic targets for HCC. In this study, we found that circITGA7 is significantly downregulated in HCC tissue compared to adjacent non-tumor tissue. Functional experiments such as CCK8, EdU, colony formation and wound healing assays proved that overexpression of circITGA7 can effectively inhibit the proliferation, migration and invasion of HCC cells. Further research found that circITGA7 can inhibit miR-330 to release BCL11B expression, thereby promoting P53 expression, blocking the cell cycle and promoting apoptosis in HCC cells. In addition, circITGA7 can impede the proliferation of HCC cells in vivo. Therefore, circITGA7 is a potential biomarker for the diagnosis of HCC development and a potential target for the treatment of HCC.</p>\",\"PeriodicalId\":9385,\"journal\":{\"name\":\"Cancer Cell International\",\"volume\":\"25 1\",\"pages\":\"121\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11954299/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer Cell International\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12935-025-03714-0\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Cell International","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12935-025-03714-0","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
CircITGA7 overexpression suppresses HCC progression via miR-330/BCL11B axis regulation.
As a kind of prevalent malignancy globally, hepatocellular carcinoma (HCC) is characterized by significant morbidity and mortality due to the difficulties in early diagnosis and limited treatment options. Circular RNAs (circRNAs) are a type of circular single-stranded RNA molecule formed by the back-splicing of the 5' end and the 3' end of linear RNA, possessing multiple biological functions. In recent years, numerous reports have demonstrated that circRNAs are potential biomarkers and therapeutic targets for HCC. In this study, we found that circITGA7 is significantly downregulated in HCC tissue compared to adjacent non-tumor tissue. Functional experiments such as CCK8, EdU, colony formation and wound healing assays proved that overexpression of circITGA7 can effectively inhibit the proliferation, migration and invasion of HCC cells. Further research found that circITGA7 can inhibit miR-330 to release BCL11B expression, thereby promoting P53 expression, blocking the cell cycle and promoting apoptosis in HCC cells. In addition, circITGA7 can impede the proliferation of HCC cells in vivo. Therefore, circITGA7 is a potential biomarker for the diagnosis of HCC development and a potential target for the treatment of HCC.
期刊介绍:
Cancer Cell International publishes articles on all aspects of cancer cell biology, originating largely from, but not limited to, work using cell culture techniques.
The journal focuses on novel cancer studies reporting data from biological experiments performed on cells grown in vitro, in two- or three-dimensional systems, and/or in vivo (animal experiments). These types of experiments have provided crucial data in many fields, from cell proliferation and transformation, to epithelial-mesenchymal interaction, to apoptosis, and host immune response to tumors.
Cancer Cell International also considers articles that focus on novel technologies or novel pathways in molecular analysis and on epidemiological studies that may affect patient care, as well as articles reporting translational cancer research studies where in vitro discoveries are bridged to the clinic. As such, the journal is interested in laboratory and animal studies reporting on novel biomarkers of tumor progression and response to therapy and on their applicability to human cancers.