Katie L Thomas, Benjamin R Bellenie, Olivia W Rossanese
{"title":"单价降解剂的合理设计:Cyclin K降解剂的经验教训。","authors":"Katie L Thomas, Benjamin R Bellenie, Olivia W Rossanese","doi":"10.2533/chimia.2025.162","DOIUrl":null,"url":null,"abstract":"<p><p>Monovalent degraders can enhance pre-existing surface complementarity between a target protein and a ligase to induce target degradation via the proteasome. For the most part, degraders have been discovered serendipitously and structure-activity relationship (SAR) studies have been limited, making it difficult to rationally design new compounds. Here we discuss how work on the SAR of cyclin K degraders demonstrates that a broad range of compounds can stabilise protein-protein interactions to induce degradation and how it lays the foundation for further monovalent degrader discovery.</p>","PeriodicalId":9957,"journal":{"name":"Chimia","volume":"79 3","pages":"162-166"},"PeriodicalIF":1.1000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards the Rational Design of Monovalent Degraders: Lessons Learnt from Cyclin K Degraders.\",\"authors\":\"Katie L Thomas, Benjamin R Bellenie, Olivia W Rossanese\",\"doi\":\"10.2533/chimia.2025.162\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Monovalent degraders can enhance pre-existing surface complementarity between a target protein and a ligase to induce target degradation via the proteasome. For the most part, degraders have been discovered serendipitously and structure-activity relationship (SAR) studies have been limited, making it difficult to rationally design new compounds. Here we discuss how work on the SAR of cyclin K degraders demonstrates that a broad range of compounds can stabilise protein-protein interactions to induce degradation and how it lays the foundation for further monovalent degrader discovery.</p>\",\"PeriodicalId\":9957,\"journal\":{\"name\":\"Chimia\",\"volume\":\"79 3\",\"pages\":\"162-166\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chimia\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.2533/chimia.2025.162\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chimia","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.2533/chimia.2025.162","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Towards the Rational Design of Monovalent Degraders: Lessons Learnt from Cyclin K Degraders.
Monovalent degraders can enhance pre-existing surface complementarity between a target protein and a ligase to induce target degradation via the proteasome. For the most part, degraders have been discovered serendipitously and structure-activity relationship (SAR) studies have been limited, making it difficult to rationally design new compounds. Here we discuss how work on the SAR of cyclin K degraders demonstrates that a broad range of compounds can stabilise protein-protein interactions to induce degradation and how it lays the foundation for further monovalent degrader discovery.
期刊介绍:
CHIMIA, a scientific journal for chemistry in the broadest sense covers the interests of a wide and diverse readership. Contributions from all fields of chemistry and related areas are considered for publication in the form of Review Articles and Notes. A characteristic feature of CHIMIA are the thematic issues, each devoted to an area of great current significance.