Xiaozhou Yao , Junru Ji , Dandan Chen , Yike Zhu , Xingjun Cai
{"title":"ezh2诱导的Nrf2启动子区组蛋白甲基化介导炎症性心肌细胞损伤的焦亡。","authors":"Xiaozhou Yao , Junru Ji , Dandan Chen , Yike Zhu , Xingjun Cai","doi":"10.1016/j.bbagen.2025.130799","DOIUrl":null,"url":null,"abstract":"<div><div>Myocardial dysfunction is one of the most severe sepsis syndromes. EZH2 participates in regulating the inflammatory response in tissues; however, its role in septic myocarditis remains unclear. In this study, various concentrations of lipopolysaccharide (LPS) were used to treat H9C2 cells in order to mimic sepsis. Cell pyroptosis was detected by flow cytometry, and further confirmed by the expression of biomarkers and levels of cytokines. Caspase-1 activity was evaluated by flow cytometry and immunofluorescence assays. Gene expression was detected by reverse transcription-PCR (RT-PCR) and western blotting. Chromatin Immunoprecipitation – Quantitative PCR was used to detect the levels of histone methylation in the Nrf2 promoter region. Our results showed that LPS activated cell pyroptosis, promoted EZH2 expression, and inhibited Nrf2 expression in H9C2 cells. Overexpression of EZH2 enhanced LPS-induced cell pyroptosis, as shown by increased Caspase-1 activity, increased expression of N-GSDMD and NLRP3 proteins, and higher levels of IL-1β, IL-18, and LDH. Moreover, overexpression of EZH2 inhibited <em>Nrf2</em> transcription. In contrast, knockdown of EZH2 suppressed pyroptosis and promoted Nrf2 expression in LPS-treated H9C2 cells. Results of chromatin immunoprecipitation – quantitative PCR verified that EZH2 regulated <em>Nrf2</em> transcription via H3K27me3 modification. Furthermore, overexpression of Nrf2 inhibited cell pyroptosis and knockdown of Nrf2 promoted cell pyroptosis. Knockdown of Nrf2 reversed the cardioprotective effect of EZH2 knockdown. Collectively, our results suggest that EZH2 promotes cell pyroptosis by enhancing H3K27me3 expression and inhibiting <em>Nrf2</em> transcription in cardiomyocytes under inflammatory conditions.</div></div>","PeriodicalId":8800,"journal":{"name":"Biochimica et biophysica acta. General subjects","volume":"1869 6","pages":"Article 130799"},"PeriodicalIF":2.8000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EZH2-induced histone methylation in the Nrf2 promoter region mediates pyroptosis in inflammatory cardiomyocyte injury\",\"authors\":\"Xiaozhou Yao , Junru Ji , Dandan Chen , Yike Zhu , Xingjun Cai\",\"doi\":\"10.1016/j.bbagen.2025.130799\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Myocardial dysfunction is one of the most severe sepsis syndromes. EZH2 participates in regulating the inflammatory response in tissues; however, its role in septic myocarditis remains unclear. In this study, various concentrations of lipopolysaccharide (LPS) were used to treat H9C2 cells in order to mimic sepsis. Cell pyroptosis was detected by flow cytometry, and further confirmed by the expression of biomarkers and levels of cytokines. Caspase-1 activity was evaluated by flow cytometry and immunofluorescence assays. Gene expression was detected by reverse transcription-PCR (RT-PCR) and western blotting. Chromatin Immunoprecipitation – Quantitative PCR was used to detect the levels of histone methylation in the Nrf2 promoter region. Our results showed that LPS activated cell pyroptosis, promoted EZH2 expression, and inhibited Nrf2 expression in H9C2 cells. Overexpression of EZH2 enhanced LPS-induced cell pyroptosis, as shown by increased Caspase-1 activity, increased expression of N-GSDMD and NLRP3 proteins, and higher levels of IL-1β, IL-18, and LDH. Moreover, overexpression of EZH2 inhibited <em>Nrf2</em> transcription. In contrast, knockdown of EZH2 suppressed pyroptosis and promoted Nrf2 expression in LPS-treated H9C2 cells. Results of chromatin immunoprecipitation – quantitative PCR verified that EZH2 regulated <em>Nrf2</em> transcription via H3K27me3 modification. Furthermore, overexpression of Nrf2 inhibited cell pyroptosis and knockdown of Nrf2 promoted cell pyroptosis. Knockdown of Nrf2 reversed the cardioprotective effect of EZH2 knockdown. Collectively, our results suggest that EZH2 promotes cell pyroptosis by enhancing H3K27me3 expression and inhibiting <em>Nrf2</em> transcription in cardiomyocytes under inflammatory conditions.</div></div>\",\"PeriodicalId\":8800,\"journal\":{\"name\":\"Biochimica et biophysica acta. General subjects\",\"volume\":\"1869 6\",\"pages\":\"Article 130799\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochimica et biophysica acta. General subjects\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304416525000443\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. General subjects","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304416525000443","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
EZH2-induced histone methylation in the Nrf2 promoter region mediates pyroptosis in inflammatory cardiomyocyte injury
Myocardial dysfunction is one of the most severe sepsis syndromes. EZH2 participates in regulating the inflammatory response in tissues; however, its role in septic myocarditis remains unclear. In this study, various concentrations of lipopolysaccharide (LPS) were used to treat H9C2 cells in order to mimic sepsis. Cell pyroptosis was detected by flow cytometry, and further confirmed by the expression of biomarkers and levels of cytokines. Caspase-1 activity was evaluated by flow cytometry and immunofluorescence assays. Gene expression was detected by reverse transcription-PCR (RT-PCR) and western blotting. Chromatin Immunoprecipitation – Quantitative PCR was used to detect the levels of histone methylation in the Nrf2 promoter region. Our results showed that LPS activated cell pyroptosis, promoted EZH2 expression, and inhibited Nrf2 expression in H9C2 cells. Overexpression of EZH2 enhanced LPS-induced cell pyroptosis, as shown by increased Caspase-1 activity, increased expression of N-GSDMD and NLRP3 proteins, and higher levels of IL-1β, IL-18, and LDH. Moreover, overexpression of EZH2 inhibited Nrf2 transcription. In contrast, knockdown of EZH2 suppressed pyroptosis and promoted Nrf2 expression in LPS-treated H9C2 cells. Results of chromatin immunoprecipitation – quantitative PCR verified that EZH2 regulated Nrf2 transcription via H3K27me3 modification. Furthermore, overexpression of Nrf2 inhibited cell pyroptosis and knockdown of Nrf2 promoted cell pyroptosis. Knockdown of Nrf2 reversed the cardioprotective effect of EZH2 knockdown. Collectively, our results suggest that EZH2 promotes cell pyroptosis by enhancing H3K27me3 expression and inhibiting Nrf2 transcription in cardiomyocytes under inflammatory conditions.
期刊介绍:
BBA General Subjects accepts for submission either original, hypothesis-driven studies or reviews covering subjects in biochemistry and biophysics that are considered to have general interest for a wide audience. Manuscripts with interdisciplinary approaches are especially encouraged.