调查谷歌趋势,预测印度北部通过综合疾病监测计划报告的急性发热性疾病爆发。

IF 3.4 3区 医学 Q2 INFECTIOUS DISEASES
Madhur Verma, Kamal Kishore, Pragyan Paramita Parija, Soumya Swaroop Sahoo, Dolly Gambhir, Usha Gupta, Rakesh Kakkar
{"title":"调查谷歌趋势,预测印度北部通过综合疾病监测计划报告的急性发热性疾病爆发。","authors":"Madhur Verma, Kamal Kishore, Pragyan Paramita Parija, Soumya Swaroop Sahoo, Dolly Gambhir, Usha Gupta, Rakesh Kakkar","doi":"10.1186/s12879-025-10801-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Acute Febrile Illness (AFI) like Malaria, Dengue, Chikungunya, and Enteric fever still remain the most common cause of seeking healthcare in low-middle-income countries and need to be constantly monitored for any impending outbreak. Digital epidemiology promises to assist traditional health surveillance. The health data (including AFI) collated by Google using specialised platforms like Google Trends (GT) is known to correlate with actual disease trends. The present study thus aims to assess the potential of GT to support routine surveillance system and forecast AFI outbreaks reported through the Indian Integrated Disease Surveillance Programme (IDSP).</p><p><strong>Methods: </strong>We utilised Haryana's IDSP portal to retrieve the weekly data of the most commonly reported infectious diseases causing AFI between 2011 and 2020. Internet search trends were downloaded using GT. Descriptive statistics estimated the burden of the AFI and Bland-Altman's plot depicted statistical agreement between the two. We adopted the Box-Jenkins approach to attain the final SARIMA model and explain the time-dependent weekly incidence of AFI.</p><p><strong>Results: </strong>The time series plot of the reported AFI displayed trends. Martin- Bland plots depicted acceptable agreement between two datasets for all Chikungunya and Dengue. Among the models evaluated, the Malaria model [SARIMA(1,1,1)(1,1,1)] demonstrated the best performance with a balanced fit and reasonable accuracy, while the Enteric Fever model [SARIMA(0,1,0)(1,1,1)] exhibited low prediction error but weak seasonal significance. In contrast, the Dengue [SARIMA(1,1,0)(1,1,0)] and Chikungunya [ARIMA(1,0,0)(0,0,0)] models had high forecast errors, limiting their predictive reliability. Overall, GT supplemented the prediction performance of the SARIMA models with adjusted R<sup>2</sup> of 46%, 50%, 50%, and 52% compared to the original 43%, 49%, 20%, and 48%.</p><p><strong>Conclusions: </strong>Our study observed modest improvements in GT-based SARIMA forecasting models compared to routine IDSP mechanisms for predicting AFI outbreaks in Haryana, highlighting the potential for further enhancement. As more granular GT data becomes available, its integration with traditional surveillance systems could significantly enhance forecasting accuracy for AFI and other infectious disease outbreaks. At no additional cost to the health system, GT can serve as a valuable, real-time digital epidemiology tool, strengthening public health preparedness and enabling timely interventions for the early containment of emerging diseases.</p>","PeriodicalId":8981,"journal":{"name":"BMC Infectious Diseases","volume":"25 1","pages":"431"},"PeriodicalIF":3.4000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11951705/pdf/","citationCount":"0","resultStr":"{\"title\":\"Investigating Google Trends to forecast acute febrile illness outbreaks in North India reported through the Integrated Disease Surveillance Program.\",\"authors\":\"Madhur Verma, Kamal Kishore, Pragyan Paramita Parija, Soumya Swaroop Sahoo, Dolly Gambhir, Usha Gupta, Rakesh Kakkar\",\"doi\":\"10.1186/s12879-025-10801-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Acute Febrile Illness (AFI) like Malaria, Dengue, Chikungunya, and Enteric fever still remain the most common cause of seeking healthcare in low-middle-income countries and need to be constantly monitored for any impending outbreak. Digital epidemiology promises to assist traditional health surveillance. The health data (including AFI) collated by Google using specialised platforms like Google Trends (GT) is known to correlate with actual disease trends. The present study thus aims to assess the potential of GT to support routine surveillance system and forecast AFI outbreaks reported through the Indian Integrated Disease Surveillance Programme (IDSP).</p><p><strong>Methods: </strong>We utilised Haryana's IDSP portal to retrieve the weekly data of the most commonly reported infectious diseases causing AFI between 2011 and 2020. Internet search trends were downloaded using GT. Descriptive statistics estimated the burden of the AFI and Bland-Altman's plot depicted statistical agreement between the two. We adopted the Box-Jenkins approach to attain the final SARIMA model and explain the time-dependent weekly incidence of AFI.</p><p><strong>Results: </strong>The time series plot of the reported AFI displayed trends. Martin- Bland plots depicted acceptable agreement between two datasets for all Chikungunya and Dengue. Among the models evaluated, the Malaria model [SARIMA(1,1,1)(1,1,1)] demonstrated the best performance with a balanced fit and reasonable accuracy, while the Enteric Fever model [SARIMA(0,1,0)(1,1,1)] exhibited low prediction error but weak seasonal significance. In contrast, the Dengue [SARIMA(1,1,0)(1,1,0)] and Chikungunya [ARIMA(1,0,0)(0,0,0)] models had high forecast errors, limiting their predictive reliability. Overall, GT supplemented the prediction performance of the SARIMA models with adjusted R<sup>2</sup> of 46%, 50%, 50%, and 52% compared to the original 43%, 49%, 20%, and 48%.</p><p><strong>Conclusions: </strong>Our study observed modest improvements in GT-based SARIMA forecasting models compared to routine IDSP mechanisms for predicting AFI outbreaks in Haryana, highlighting the potential for further enhancement. As more granular GT data becomes available, its integration with traditional surveillance systems could significantly enhance forecasting accuracy for AFI and other infectious disease outbreaks. At no additional cost to the health system, GT can serve as a valuable, real-time digital epidemiology tool, strengthening public health preparedness and enabling timely interventions for the early containment of emerging diseases.</p>\",\"PeriodicalId\":8981,\"journal\":{\"name\":\"BMC Infectious Diseases\",\"volume\":\"25 1\",\"pages\":\"431\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11951705/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Infectious Diseases\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12879-025-10801-0\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"INFECTIOUS DISEASES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Infectious Diseases","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12879-025-10801-0","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigating Google Trends to forecast acute febrile illness outbreaks in North India reported through the Integrated Disease Surveillance Program.

Background: Acute Febrile Illness (AFI) like Malaria, Dengue, Chikungunya, and Enteric fever still remain the most common cause of seeking healthcare in low-middle-income countries and need to be constantly monitored for any impending outbreak. Digital epidemiology promises to assist traditional health surveillance. The health data (including AFI) collated by Google using specialised platforms like Google Trends (GT) is known to correlate with actual disease trends. The present study thus aims to assess the potential of GT to support routine surveillance system and forecast AFI outbreaks reported through the Indian Integrated Disease Surveillance Programme (IDSP).

Methods: We utilised Haryana's IDSP portal to retrieve the weekly data of the most commonly reported infectious diseases causing AFI between 2011 and 2020. Internet search trends were downloaded using GT. Descriptive statistics estimated the burden of the AFI and Bland-Altman's plot depicted statistical agreement between the two. We adopted the Box-Jenkins approach to attain the final SARIMA model and explain the time-dependent weekly incidence of AFI.

Results: The time series plot of the reported AFI displayed trends. Martin- Bland plots depicted acceptable agreement between two datasets for all Chikungunya and Dengue. Among the models evaluated, the Malaria model [SARIMA(1,1,1)(1,1,1)] demonstrated the best performance with a balanced fit and reasonable accuracy, while the Enteric Fever model [SARIMA(0,1,0)(1,1,1)] exhibited low prediction error but weak seasonal significance. In contrast, the Dengue [SARIMA(1,1,0)(1,1,0)] and Chikungunya [ARIMA(1,0,0)(0,0,0)] models had high forecast errors, limiting their predictive reliability. Overall, GT supplemented the prediction performance of the SARIMA models with adjusted R2 of 46%, 50%, 50%, and 52% compared to the original 43%, 49%, 20%, and 48%.

Conclusions: Our study observed modest improvements in GT-based SARIMA forecasting models compared to routine IDSP mechanisms for predicting AFI outbreaks in Haryana, highlighting the potential for further enhancement. As more granular GT data becomes available, its integration with traditional surveillance systems could significantly enhance forecasting accuracy for AFI and other infectious disease outbreaks. At no additional cost to the health system, GT can serve as a valuable, real-time digital epidemiology tool, strengthening public health preparedness and enabling timely interventions for the early containment of emerging diseases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BMC Infectious Diseases
BMC Infectious Diseases 医学-传染病学
CiteScore
6.50
自引率
0.00%
发文量
860
审稿时长
3.3 months
期刊介绍: BMC Infectious Diseases is an open access, peer-reviewed journal that considers articles on all aspects of the prevention, diagnosis and management of infectious and sexually transmitted diseases in humans, as well as related molecular genetics, pathophysiology, and epidemiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信