{"title":"血管内皮细胞中的血流敏感性离子通道:激活机制和在机械传导中的作用。","authors":"Katie M Beverley, Sang Joon Ahn, Irena Levitan","doi":"10.1016/j.bpj.2025.03.021","DOIUrl":null,"url":null,"abstract":"<p><p>The purpose of this review is to evaluate the current knowledge about the mechanisms by which mechanosensitive ion channels are activated by fluid shear stress in endothelial cells. We focus on three classes of endothelial ion channels that are most well studied for their sensitivity to flow and roles in mechanotransduction: inwardly-rectifying K<sup>+</sup> channels, Piezo channels and TRPV channels. We also discuss the mechanisms by which these channels initiate and contribute to mechanosensitive signaling pathways. Three types of mechanisms have been described for flow-induced activation of ion channels: 1) through interaction with apical membrane flow sensors, such as glycocalyx, which is likely to be deformed by flow, 2) directly by sensing membrane stretch that is induced by shear stress, or 3) via flow-sensitive channel-channel or lipid channel interactions. We also demonstrate the physiological role of these channels and how they are related to cardiovascular and neurological diseases. Further studies are needed to determine how these channels function cooperatively to mediate the endothelial response to flow.</p>","PeriodicalId":8922,"journal":{"name":"Biophysical journal","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flow Sensitive Ion Channels in Vascular Endothelial Cells: Mechanisms of Activation and Roles in Mechanotransduction.\",\"authors\":\"Katie M Beverley, Sang Joon Ahn, Irena Levitan\",\"doi\":\"10.1016/j.bpj.2025.03.021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The purpose of this review is to evaluate the current knowledge about the mechanisms by which mechanosensitive ion channels are activated by fluid shear stress in endothelial cells. We focus on three classes of endothelial ion channels that are most well studied for their sensitivity to flow and roles in mechanotransduction: inwardly-rectifying K<sup>+</sup> channels, Piezo channels and TRPV channels. We also discuss the mechanisms by which these channels initiate and contribute to mechanosensitive signaling pathways. Three types of mechanisms have been described for flow-induced activation of ion channels: 1) through interaction with apical membrane flow sensors, such as glycocalyx, which is likely to be deformed by flow, 2) directly by sensing membrane stretch that is induced by shear stress, or 3) via flow-sensitive channel-channel or lipid channel interactions. We also demonstrate the physiological role of these channels and how they are related to cardiovascular and neurological diseases. Further studies are needed to determine how these channels function cooperatively to mediate the endothelial response to flow.</p>\",\"PeriodicalId\":8922,\"journal\":{\"name\":\"Biophysical journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biophysical journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.bpj.2025.03.021\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.bpj.2025.03.021","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Flow Sensitive Ion Channels in Vascular Endothelial Cells: Mechanisms of Activation and Roles in Mechanotransduction.
The purpose of this review is to evaluate the current knowledge about the mechanisms by which mechanosensitive ion channels are activated by fluid shear stress in endothelial cells. We focus on three classes of endothelial ion channels that are most well studied for their sensitivity to flow and roles in mechanotransduction: inwardly-rectifying K+ channels, Piezo channels and TRPV channels. We also discuss the mechanisms by which these channels initiate and contribute to mechanosensitive signaling pathways. Three types of mechanisms have been described for flow-induced activation of ion channels: 1) through interaction with apical membrane flow sensors, such as glycocalyx, which is likely to be deformed by flow, 2) directly by sensing membrane stretch that is induced by shear stress, or 3) via flow-sensitive channel-channel or lipid channel interactions. We also demonstrate the physiological role of these channels and how they are related to cardiovascular and neurological diseases. Further studies are needed to determine how these channels function cooperatively to mediate the endothelial response to flow.
期刊介绍:
BJ publishes original articles, letters, and perspectives on important problems in modern biophysics. The papers should be written so as to be of interest to a broad community of biophysicists. BJ welcomes experimental studies that employ quantitative physical approaches for the study of biological systems, including or spanning scales from molecule to whole organism. Experimental studies of a purely descriptive or phenomenological nature, with no theoretical or mechanistic underpinning, are not appropriate for publication in BJ. Theoretical studies should offer new insights into the understanding ofexperimental results or suggest new experimentally testable hypotheses. Articles reporting significant methodological or technological advances, which have potential to open new areas of biophysical investigation, are also suitable for publication in BJ. Papers describing improvements in accuracy or speed of existing methods or extra detail within methods described previously are not suitable for BJ.