咪唑触发的原位荧光反应系统定量测定多源多巴胺。

IF 5.6 1区 化学 Q1 CHEMISTRY, ANALYTICAL
Talanta Pub Date : 2025-09-01 Epub Date: 2025-03-20 DOI:10.1016/j.talanta.2025.127975
Yifei Ma, Lijie Zhang, Hong Yang, Shanshan Zhu, Jinhua Liu
{"title":"咪唑触发的原位荧光反应系统定量测定多源多巴胺。","authors":"Yifei Ma, Lijie Zhang, Hong Yang, Shanshan Zhu, Jinhua Liu","doi":"10.1016/j.talanta.2025.127975","DOIUrl":null,"url":null,"abstract":"<p><p>Highly selective and sensitive determination of dopamine (DA) from multiple sources remains a persistent and significant challenge. Here, we develop an imidazole-triggered in situ fluorescence reaction system for highly selective and sensitive determination of DA from various sources (human, horse, dog, rabbit, and mouse). The system operates by catalyzing the oxidation of DA with 1,5-Dihydroxynaphthalene (1,5-DHA) through a Lewis base formed by imidazole, leading to the rapid generation of yellow azamonardine fluorescent compounds (AFC). Notably, the system demonstrates minimal background noise and a high signal-to-noise ratio of up to 300-fold with a determination limit of 33.33 pM, making it 10-100 times more sensitive than conventional enzyme-linked immunosorbent assay (ELISA) methods. Moreover, selectivity tests reveal that our system can effectively distinguish between several common interfering substances, even at concentrations as low as 10 nM. The developed system shows promising results in detecting DA from diverse sources (humans, horses, dogs, rabbits, and mice), including urine samples from clinical patients, exhibiting good agreement with traditional ELISA kits. Therefore, the established in situ fluorescence reaction system holds great potential for the determination of DA-related disorders due to its impressive analytical capabilities.</p>","PeriodicalId":435,"journal":{"name":"Talanta","volume":"292 ","pages":"127975"},"PeriodicalIF":5.6000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Imidazole-triggered in situ fluorescence reaction system for quantitatively determination of dopamine from multiple sources.\",\"authors\":\"Yifei Ma, Lijie Zhang, Hong Yang, Shanshan Zhu, Jinhua Liu\",\"doi\":\"10.1016/j.talanta.2025.127975\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Highly selective and sensitive determination of dopamine (DA) from multiple sources remains a persistent and significant challenge. Here, we develop an imidazole-triggered in situ fluorescence reaction system for highly selective and sensitive determination of DA from various sources (human, horse, dog, rabbit, and mouse). The system operates by catalyzing the oxidation of DA with 1,5-Dihydroxynaphthalene (1,5-DHA) through a Lewis base formed by imidazole, leading to the rapid generation of yellow azamonardine fluorescent compounds (AFC). Notably, the system demonstrates minimal background noise and a high signal-to-noise ratio of up to 300-fold with a determination limit of 33.33 pM, making it 10-100 times more sensitive than conventional enzyme-linked immunosorbent assay (ELISA) methods. Moreover, selectivity tests reveal that our system can effectively distinguish between several common interfering substances, even at concentrations as low as 10 nM. The developed system shows promising results in detecting DA from diverse sources (humans, horses, dogs, rabbits, and mice), including urine samples from clinical patients, exhibiting good agreement with traditional ELISA kits. Therefore, the established in situ fluorescence reaction system holds great potential for the determination of DA-related disorders due to its impressive analytical capabilities.</p>\",\"PeriodicalId\":435,\"journal\":{\"name\":\"Talanta\",\"volume\":\"292 \",\"pages\":\"127975\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Talanta\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.talanta.2025.127975\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Talanta","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.talanta.2025.127975","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/20 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

高选择性和高灵敏度的多巴胺(DA)测定仍然是一个持续和重大的挑战。在这里,我们开发了一种咪唑触发的原位荧光反应系统,用于高选择性和敏感地测定各种来源(人,马,狗,兔和小鼠)的DA。该系统通过咪唑形成的路易斯碱催化1,5-二羟基萘(1,5- dha)氧化DA,快速生成黄色氮杂定荧光化合物(AFC)。值得注意的是,该系统具有最小的背景噪声和高达300倍的高信噪比,检测限为33.33 pM,比传统的酶联免疫吸附测定(ELISA)方法灵敏度高10-100倍。此外,选择性测试表明,即使在低至10 nM的浓度下,我们的系统也可以有效地区分几种常见的干扰物质。开发的系统在检测各种来源(人、马、狗、兔子和小鼠)的DA方面显示出令人鼓舞的结果,包括临床患者的尿液样本,与传统的ELISA试剂盒表现出良好的一致性。因此,建立的原位荧光反应体系由于其令人印象深刻的分析能力,在确定da相关疾病方面具有很大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Imidazole-triggered in situ fluorescence reaction system for quantitatively determination of dopamine from multiple sources.

Highly selective and sensitive determination of dopamine (DA) from multiple sources remains a persistent and significant challenge. Here, we develop an imidazole-triggered in situ fluorescence reaction system for highly selective and sensitive determination of DA from various sources (human, horse, dog, rabbit, and mouse). The system operates by catalyzing the oxidation of DA with 1,5-Dihydroxynaphthalene (1,5-DHA) through a Lewis base formed by imidazole, leading to the rapid generation of yellow azamonardine fluorescent compounds (AFC). Notably, the system demonstrates minimal background noise and a high signal-to-noise ratio of up to 300-fold with a determination limit of 33.33 pM, making it 10-100 times more sensitive than conventional enzyme-linked immunosorbent assay (ELISA) methods. Moreover, selectivity tests reveal that our system can effectively distinguish between several common interfering substances, even at concentrations as low as 10 nM. The developed system shows promising results in detecting DA from diverse sources (humans, horses, dogs, rabbits, and mice), including urine samples from clinical patients, exhibiting good agreement with traditional ELISA kits. Therefore, the established in situ fluorescence reaction system holds great potential for the determination of DA-related disorders due to its impressive analytical capabilities.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Talanta
Talanta 化学-分析化学
CiteScore
12.30
自引率
4.90%
发文量
861
审稿时长
29 days
期刊介绍: Talanta provides a forum for the publication of original research papers, short communications, and critical reviews in all branches of pure and applied analytical chemistry. Papers are evaluated based on established guidelines, including the fundamental nature of the study, scientific novelty, substantial improvement or advantage over existing technology or methods, and demonstrated analytical applicability. Original research papers on fundamental studies, and on novel sensor and instrumentation developments, are encouraged. Novel or improved applications in areas such as clinical and biological chemistry, environmental analysis, geochemistry, materials science and engineering, and analytical platforms for omics development are welcome. Analytical performance of methods should be determined, including interference and matrix effects, and methods should be validated by comparison with a standard method, or analysis of a certified reference material. Simple spiking recoveries may not be sufficient. The developed method should especially comprise information on selectivity, sensitivity, detection limits, accuracy, and reliability. However, applying official validation or robustness studies to a routine method or technique does not necessarily constitute novelty. Proper statistical treatment of the data should be provided. Relevant literature should be cited, including related publications by the authors, and authors should discuss how their proposed methodology compares with previously reported methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信