Alina Moter, Sonja Scharf, Hendrik Schäfer, Tobias Bexte, Philipp Wendel, Emmanuel Donnadieu, Martin-Leo Hansmann, Sylvia Hartmann, Evelyn Ullrich
{"title":"人NK细胞制剂在微通道中的迁移动力学及其对患者源性组织的侵袭","authors":"Alina Moter, Sonja Scharf, Hendrik Schäfer, Tobias Bexte, Philipp Wendel, Emmanuel Donnadieu, Martin-Leo Hansmann, Sylvia Hartmann, Evelyn Ullrich","doi":"10.1111/jcmm.70481","DOIUrl":null,"url":null,"abstract":"<p>Natural killer (NK) cells are characterised by their ability to attack cancer cells without prior antigen stimulation. Additionally, clinical trials revealed great potential of NK cells expressing chimeric antigen receptors (CARs). Successful anti-tumour efficacy remains limited by migration and infiltration to the tumour site by NK cell preparations, which is linked to the scarcity in the knowledge of migration dynamics and invasion potential. Here, we applied a recently reported innovative microfluidic microchannel technology to gain insight into the intrinsic motility of NK cells. We assessed the baseline activated and proliferating NK cells in direct comparison with T cells and investigated their motility patterns in the presence of tumour cells. Additionally, we performed high-resolution 4D confocal imaging in patient-derived hyperplastic lymphatic tissues to assess their invasive capacity. Our data revealed that the invasion potential of NK cells was greater than that of T cells, despite their similar velocities. The flexibility of the NK cell nucleus may have contributed to the higher invasion potential. The motility of CD19-CAR-NK cell preparations was similar to that of non-transduced NK cells in hyperplastic lymphoid tissue, with improved targeted migration in tumour tissue, suggesting the suitability of genetically engineered NK cells for difficult-to-reach tumour tissues.</p>","PeriodicalId":101321,"journal":{"name":"JOURNAL OF CELLULAR AND MOLECULAR MEDICINE","volume":"29 7","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jcmm.70481","citationCount":"0","resultStr":"{\"title\":\"Migration Dynamics of Human NK Cell Preparations in Microchannels and Their Invasion Into Patient-Derived Tissue\",\"authors\":\"Alina Moter, Sonja Scharf, Hendrik Schäfer, Tobias Bexte, Philipp Wendel, Emmanuel Donnadieu, Martin-Leo Hansmann, Sylvia Hartmann, Evelyn Ullrich\",\"doi\":\"10.1111/jcmm.70481\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Natural killer (NK) cells are characterised by their ability to attack cancer cells without prior antigen stimulation. Additionally, clinical trials revealed great potential of NK cells expressing chimeric antigen receptors (CARs). Successful anti-tumour efficacy remains limited by migration and infiltration to the tumour site by NK cell preparations, which is linked to the scarcity in the knowledge of migration dynamics and invasion potential. Here, we applied a recently reported innovative microfluidic microchannel technology to gain insight into the intrinsic motility of NK cells. We assessed the baseline activated and proliferating NK cells in direct comparison with T cells and investigated their motility patterns in the presence of tumour cells. Additionally, we performed high-resolution 4D confocal imaging in patient-derived hyperplastic lymphatic tissues to assess their invasive capacity. Our data revealed that the invasion potential of NK cells was greater than that of T cells, despite their similar velocities. The flexibility of the NK cell nucleus may have contributed to the higher invasion potential. The motility of CD19-CAR-NK cell preparations was similar to that of non-transduced NK cells in hyperplastic lymphoid tissue, with improved targeted migration in tumour tissue, suggesting the suitability of genetically engineered NK cells for difficult-to-reach tumour tissues.</p>\",\"PeriodicalId\":101321,\"journal\":{\"name\":\"JOURNAL OF CELLULAR AND MOLECULAR MEDICINE\",\"volume\":\"29 7\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jcmm.70481\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JOURNAL OF CELLULAR AND MOLECULAR MEDICINE\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jcmm.70481\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF CELLULAR AND MOLECULAR MEDICINE","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jcmm.70481","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Migration Dynamics of Human NK Cell Preparations in Microchannels and Their Invasion Into Patient-Derived Tissue
Natural killer (NK) cells are characterised by their ability to attack cancer cells without prior antigen stimulation. Additionally, clinical trials revealed great potential of NK cells expressing chimeric antigen receptors (CARs). Successful anti-tumour efficacy remains limited by migration and infiltration to the tumour site by NK cell preparations, which is linked to the scarcity in the knowledge of migration dynamics and invasion potential. Here, we applied a recently reported innovative microfluidic microchannel technology to gain insight into the intrinsic motility of NK cells. We assessed the baseline activated and proliferating NK cells in direct comparison with T cells and investigated their motility patterns in the presence of tumour cells. Additionally, we performed high-resolution 4D confocal imaging in patient-derived hyperplastic lymphatic tissues to assess their invasive capacity. Our data revealed that the invasion potential of NK cells was greater than that of T cells, despite their similar velocities. The flexibility of the NK cell nucleus may have contributed to the higher invasion potential. The motility of CD19-CAR-NK cell preparations was similar to that of non-transduced NK cells in hyperplastic lymphoid tissue, with improved targeted migration in tumour tissue, suggesting the suitability of genetically engineered NK cells for difficult-to-reach tumour tissues.
期刊介绍:
The Journal of Cellular and Molecular Medicine serves as a bridge between physiology and cellular medicine, as well as molecular biology and molecular therapeutics. With a 20-year history, the journal adopts an interdisciplinary approach to showcase innovative discoveries.
It publishes research aimed at advancing the collective understanding of the cellular and molecular mechanisms underlying diseases. The journal emphasizes translational studies that translate this knowledge into therapeutic strategies. Being fully open access, the journal is accessible to all readers.