{"title":"设计气候智能型作物以确保可持续农业和未来粮食安全的新策略","authors":"Ali Raza, Tushar Khare, Xinyue Zhang, Md. Mezanur Rahman, Muzammil Hussain, Sarvajeet Singh Gill, Zhong-Hua Chen, Meixue Zhou, Zhangli Hu, Rajeev K. Varshney","doi":"10.1002/sae2.70048","DOIUrl":null,"url":null,"abstract":"<p>To fulfil food and nutritional demand for nine billion people by the mid-21st century, global food production must increase by 60% regardless of challenges such as environmental pollution, water scarcity and land degradation. Climate change exacerbates the frequency and intensity of biotic and abiotic stresses, which, in turn, severely compromise global crop yields, jeopardize food supply, deteriorate sustainable development goals for achieving global food safety, and limit sustainable climate-smart crop production. Current food production and consumption practices negatively influence the environment, posing a major threat to the global ecosystem and human health. Addressing these critical issues to achieve sustainable agriculture necessitates designing future crops employing cutting-edge breeding strategies for enhanced productivity with minimal environmental footprints. This endeavour requires a comprehensive understanding of plant stress adaptation, signalling pathways and mitigation mechanisms. In this review, we first explain the diverse impacts of ongoing climate change events on crop production. Subsequently, we outline various strategies to tackle climate change, including agronomic practices, and advanced technologies for understanding the physiological and molecular mechanisms of plant stress tolerance. We also discuss breeding and engineering crops with superior stress tolerance and disease resistance and nurturing healthy microbial partnerships between plants and soil to ensure food and nutrition security for current and future populations amidst mounting environmental challenges.</p>","PeriodicalId":100834,"journal":{"name":"Journal of Sustainable Agriculture and Environment","volume":"4 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/sae2.70048","citationCount":"0","resultStr":"{\"title\":\"Novel Strategies for Designing Climate-Smart Crops to Ensure Sustainable Agriculture and Future Food Security\",\"authors\":\"Ali Raza, Tushar Khare, Xinyue Zhang, Md. Mezanur Rahman, Muzammil Hussain, Sarvajeet Singh Gill, Zhong-Hua Chen, Meixue Zhou, Zhangli Hu, Rajeev K. Varshney\",\"doi\":\"10.1002/sae2.70048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>To fulfil food and nutritional demand for nine billion people by the mid-21st century, global food production must increase by 60% regardless of challenges such as environmental pollution, water scarcity and land degradation. Climate change exacerbates the frequency and intensity of biotic and abiotic stresses, which, in turn, severely compromise global crop yields, jeopardize food supply, deteriorate sustainable development goals for achieving global food safety, and limit sustainable climate-smart crop production. Current food production and consumption practices negatively influence the environment, posing a major threat to the global ecosystem and human health. Addressing these critical issues to achieve sustainable agriculture necessitates designing future crops employing cutting-edge breeding strategies for enhanced productivity with minimal environmental footprints. This endeavour requires a comprehensive understanding of plant stress adaptation, signalling pathways and mitigation mechanisms. In this review, we first explain the diverse impacts of ongoing climate change events on crop production. Subsequently, we outline various strategies to tackle climate change, including agronomic practices, and advanced technologies for understanding the physiological and molecular mechanisms of plant stress tolerance. We also discuss breeding and engineering crops with superior stress tolerance and disease resistance and nurturing healthy microbial partnerships between plants and soil to ensure food and nutrition security for current and future populations amidst mounting environmental challenges.</p>\",\"PeriodicalId\":100834,\"journal\":{\"name\":\"Journal of Sustainable Agriculture and Environment\",\"volume\":\"4 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/sae2.70048\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sustainable Agriculture and Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/sae2.70048\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sustainable Agriculture and Environment","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/sae2.70048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Novel Strategies for Designing Climate-Smart Crops to Ensure Sustainable Agriculture and Future Food Security
To fulfil food and nutritional demand for nine billion people by the mid-21st century, global food production must increase by 60% regardless of challenges such as environmental pollution, water scarcity and land degradation. Climate change exacerbates the frequency and intensity of biotic and abiotic stresses, which, in turn, severely compromise global crop yields, jeopardize food supply, deteriorate sustainable development goals for achieving global food safety, and limit sustainable climate-smart crop production. Current food production and consumption practices negatively influence the environment, posing a major threat to the global ecosystem and human health. Addressing these critical issues to achieve sustainable agriculture necessitates designing future crops employing cutting-edge breeding strategies for enhanced productivity with minimal environmental footprints. This endeavour requires a comprehensive understanding of plant stress adaptation, signalling pathways and mitigation mechanisms. In this review, we first explain the diverse impacts of ongoing climate change events on crop production. Subsequently, we outline various strategies to tackle climate change, including agronomic practices, and advanced technologies for understanding the physiological and molecular mechanisms of plant stress tolerance. We also discuss breeding and engineering crops with superior stress tolerance and disease resistance and nurturing healthy microbial partnerships between plants and soil to ensure food and nutrition security for current and future populations amidst mounting environmental challenges.