温带沿海植被梯度酸性硫酸盐土壤的特征

IF 4 2区 农林科学 Q2 SOIL SCIENCE
M. Wang, I. Cartwright, V. N. L. Wong
{"title":"温带沿海植被梯度酸性硫酸盐土壤的特征","authors":"M. Wang,&nbsp;I. Cartwright,&nbsp;V. N. L. Wong","doi":"10.1111/ejss.70100","DOIUrl":null,"url":null,"abstract":"<p>Acid sulfate soils (ASS) pose a significant environmental risk, yet their systematic characterisation is often overlooked in conservation areas, leaving an important gap in understanding their distribution and management. This study characterises ASS in three temperate coastal wetland vegetation communities—mangroves, saltmarshes and paperbark forests—located in southern Australia. Soil samples were collected from two sites, Rhyll and Corner Inlet, representing typical low-energy embayment environments. The study aimed to assess the acidification risk by analysing key soil properties, including pH, electrical conductivity, organic carbon, nitrogen content and the presence of sulfidic materials. Results indicate that mangrove soils exhibited the highest concentrations of chromium reducible sulfur (CRS), while saltmarsh and paperbark forest soils displayed varying levels of acid neutralising capacity (ANC), largely influenced by seawater intrusion and organic matter decomposition. Net acidity was highest in mangrove and deeper saltmarsh layers, indicating a significant potential acidification risk if disturbed. This study highlights the spatial variability in ASS characteristics and acidification risks across different vegetation zones in temperate coastal environments. The findings underscore the need to consider management strategies in conservation areas to mitigate acidification hazards, particularly in light of ongoing sea-level rise and climate change, which may alter the distribution of coastal vegetation and the formation of ASS. These insights provide critical baseline data for the conservation and management of temperate coastal ecosystems in southern Australia.</p>","PeriodicalId":12043,"journal":{"name":"European Journal of Soil Science","volume":"76 2","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ejss.70100","citationCount":"0","resultStr":"{\"title\":\"Characterisation of Acid Sulfate Soils Along a Temperate Coastal Vegetation Gradient\",\"authors\":\"M. Wang,&nbsp;I. Cartwright,&nbsp;V. N. L. Wong\",\"doi\":\"10.1111/ejss.70100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Acid sulfate soils (ASS) pose a significant environmental risk, yet their systematic characterisation is often overlooked in conservation areas, leaving an important gap in understanding their distribution and management. This study characterises ASS in three temperate coastal wetland vegetation communities—mangroves, saltmarshes and paperbark forests—located in southern Australia. Soil samples were collected from two sites, Rhyll and Corner Inlet, representing typical low-energy embayment environments. The study aimed to assess the acidification risk by analysing key soil properties, including pH, electrical conductivity, organic carbon, nitrogen content and the presence of sulfidic materials. Results indicate that mangrove soils exhibited the highest concentrations of chromium reducible sulfur (CRS), while saltmarsh and paperbark forest soils displayed varying levels of acid neutralising capacity (ANC), largely influenced by seawater intrusion and organic matter decomposition. Net acidity was highest in mangrove and deeper saltmarsh layers, indicating a significant potential acidification risk if disturbed. This study highlights the spatial variability in ASS characteristics and acidification risks across different vegetation zones in temperate coastal environments. The findings underscore the need to consider management strategies in conservation areas to mitigate acidification hazards, particularly in light of ongoing sea-level rise and climate change, which may alter the distribution of coastal vegetation and the formation of ASS. These insights provide critical baseline data for the conservation and management of temperate coastal ecosystems in southern Australia.</p>\",\"PeriodicalId\":12043,\"journal\":{\"name\":\"European Journal of Soil Science\",\"volume\":\"76 2\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ejss.70100\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Soil Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ejss.70100\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"SOIL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Soil Science","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ejss.70100","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

酸性硫酸盐土壤(ASS)具有重大的环境风险,但其系统特征在保护区经常被忽视,在了解其分布和管理方面留下了重要空白。本研究对位于澳大利亚南部的三个温带沿海湿地植被群落——红树林、盐沼和纸皮林——进行了研究。土壤样品采集于Rhyll和Corner Inlet两个地点,代表典型的低能耗环境。该研究旨在通过分析关键的土壤特性来评估酸化风险,包括pH值、电导率、有机碳、氮含量和硫化物物质的存在。结果表明,红树林土壤的铬可还原硫(CRS)含量最高,盐沼和纸栎林土壤的酸中和能力(ANC)水平不同,主要受海水入侵和有机质分解的影响。红树林和更深的盐沼层的净酸度最高,表明如果受到干扰,潜在的酸化风险很大。本研究强调了温带沿海环境不同植被带ASS特征和酸化风险的空间变异性。研究结果强调需要考虑保护区的管理策略,以减轻酸化危害,特别是考虑到持续的海平面上升和气候变化,这可能会改变沿海植被的分布和ASS的形成。这些见解为南澳大利亚温带沿海生态系统的保护和管理提供了关键的基线数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Characterisation of Acid Sulfate Soils Along a Temperate Coastal Vegetation Gradient

Characterisation of Acid Sulfate Soils Along a Temperate Coastal Vegetation Gradient

Acid sulfate soils (ASS) pose a significant environmental risk, yet their systematic characterisation is often overlooked in conservation areas, leaving an important gap in understanding their distribution and management. This study characterises ASS in three temperate coastal wetland vegetation communities—mangroves, saltmarshes and paperbark forests—located in southern Australia. Soil samples were collected from two sites, Rhyll and Corner Inlet, representing typical low-energy embayment environments. The study aimed to assess the acidification risk by analysing key soil properties, including pH, electrical conductivity, organic carbon, nitrogen content and the presence of sulfidic materials. Results indicate that mangrove soils exhibited the highest concentrations of chromium reducible sulfur (CRS), while saltmarsh and paperbark forest soils displayed varying levels of acid neutralising capacity (ANC), largely influenced by seawater intrusion and organic matter decomposition. Net acidity was highest in mangrove and deeper saltmarsh layers, indicating a significant potential acidification risk if disturbed. This study highlights the spatial variability in ASS characteristics and acidification risks across different vegetation zones in temperate coastal environments. The findings underscore the need to consider management strategies in conservation areas to mitigate acidification hazards, particularly in light of ongoing sea-level rise and climate change, which may alter the distribution of coastal vegetation and the formation of ASS. These insights provide critical baseline data for the conservation and management of temperate coastal ecosystems in southern Australia.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
European Journal of Soil Science
European Journal of Soil Science 农林科学-土壤科学
CiteScore
8.20
自引率
4.80%
发文量
117
审稿时长
5 months
期刊介绍: The EJSS is an international journal that publishes outstanding papers in soil science that advance the theoretical and mechanistic understanding of physical, chemical and biological processes and their interactions in soils acting from molecular to continental scales in natural and managed environments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信