José M. Conde-Alonso, Adrián M. González-Pérez, Javier Parcet, Eduardo Tablate
{"title":"高阶单李群的Hörmander-Mikhlin定理","authors":"José M. Conde-Alonso, Adrián M. González-Pérez, Javier Parcet, Eduardo Tablate","doi":"10.1112/jlms.70137","DOIUrl":null,"url":null,"abstract":"<p>We establish regularity conditions for <span></span><math>\n <semantics>\n <msub>\n <mi>L</mi>\n <mi>p</mi>\n </msub>\n <annotation>$L_p$</annotation>\n </semantics></math>-boundedness of Fourier multipliers on the group von Neumann algebras of higher rank simple Lie groups. This provides a natural Hörmander–Mikhlin (HM) criterion in terms of Lie derivatives of the symbol and a metric given by the adjoint representation. In line with Lafforgue/de la Salle's rigidity theorem, our condition imposes certain decay of the symbol at infinity. It refines and vastly generalizes a recent result by Parcet, Ricard, and de la Salle for <span></span><math>\n <semantics>\n <mrow>\n <mi>S</mi>\n <msub>\n <mi>L</mi>\n <mi>n</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>R</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$S L_n(\\mathbf {R})$</annotation>\n </semantics></math>. Our approach is partly based on a sharp local HM theorem for arbitrary Lie groups, which follows in turn from recent estimates by the authors on singular non-Toeplitz Schur multipliers. We generalize the latter to arbitrary locally compact groups and refine the cocycle-based approach to Fourier multipliers in group algebras by Junge, Mei, and Parcet. A few related open problems are also discussed.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 4","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Hörmander–Mikhlin theorem for higher rank simple Lie groups\",\"authors\":\"José M. Conde-Alonso, Adrián M. González-Pérez, Javier Parcet, Eduardo Tablate\",\"doi\":\"10.1112/jlms.70137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We establish regularity conditions for <span></span><math>\\n <semantics>\\n <msub>\\n <mi>L</mi>\\n <mi>p</mi>\\n </msub>\\n <annotation>$L_p$</annotation>\\n </semantics></math>-boundedness of Fourier multipliers on the group von Neumann algebras of higher rank simple Lie groups. This provides a natural Hörmander–Mikhlin (HM) criterion in terms of Lie derivatives of the symbol and a metric given by the adjoint representation. In line with Lafforgue/de la Salle's rigidity theorem, our condition imposes certain decay of the symbol at infinity. It refines and vastly generalizes a recent result by Parcet, Ricard, and de la Salle for <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>S</mi>\\n <msub>\\n <mi>L</mi>\\n <mi>n</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>R</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$S L_n(\\\\mathbf {R})$</annotation>\\n </semantics></math>. Our approach is partly based on a sharp local HM theorem for arbitrary Lie groups, which follows in turn from recent estimates by the authors on singular non-Toeplitz Schur multipliers. We generalize the latter to arbitrary locally compact groups and refine the cocycle-based approach to Fourier multipliers in group algebras by Junge, Mei, and Parcet. A few related open problems are also discussed.</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":\"111 4\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70137\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70137","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
建立了高阶单李群群von Neumann代数上傅里叶乘子的lp $L_p$有界性的正则性条件。这提供了一个自然的Hörmander-Mikhlin (HM)准则,根据符号的李导数和伴随表示给出的度量。根据Lafforgue/de la Salle的刚性定理,我们的条件使符号在无穷远处有一定的衰减。它改进并广泛推广了parcot、richard和de la Salle最近关于S L n(R)$ S L_n(\mathbf {R})$的结果。我们的方法部分基于任意李群的一个尖锐的局部HM定理,该定理是由作者最近对奇异非toeplitz舒尔乘子的估计而来的。我们将后者推广到任意局部紧群,并改进了Junge, Mei和paret在群代数中基于循环的傅里叶乘子方法。本文还讨论了几个相关的开放性问题。
A Hörmander–Mikhlin theorem for higher rank simple Lie groups
We establish regularity conditions for -boundedness of Fourier multipliers on the group von Neumann algebras of higher rank simple Lie groups. This provides a natural Hörmander–Mikhlin (HM) criterion in terms of Lie derivatives of the symbol and a metric given by the adjoint representation. In line with Lafforgue/de la Salle's rigidity theorem, our condition imposes certain decay of the symbol at infinity. It refines and vastly generalizes a recent result by Parcet, Ricard, and de la Salle for . Our approach is partly based on a sharp local HM theorem for arbitrary Lie groups, which follows in turn from recent estimates by the authors on singular non-Toeplitz Schur multipliers. We generalize the latter to arbitrary locally compact groups and refine the cocycle-based approach to Fourier multipliers in group algebras by Junge, Mei, and Parcet. A few related open problems are also discussed.
期刊介绍:
The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.