Guiping Liu, Fabrizio Sassi, Ruth S. Lieberman, Lawrence Coy, Steven Pawson
{"title":"MERRA-2和SABER揭示的2018年2月平流层突然变暖对中高层大气的动力响应","authors":"Guiping Liu, Fabrizio Sassi, Ruth S. Lieberman, Lawrence Coy, Steven Pawson","doi":"10.1029/2024JA033528","DOIUrl":null,"url":null,"abstract":"<p>The middle and upper atmosphere plays a critical role in linking the lower atmosphere forcing with ionospheric variability, especially during strong atmospheric activities. This study examines the dynamical response in the altitude range from ∼20 to 80 km to a major Sudden Stratospheric Warming (SSW) event peaking on 11 February 2018. We compare the reanalysis product of the Modern-Era Retrospective Analysis for Research and Applications Version 2 (MERRA-2) from the Goddard Earth Observing System (GEOS) to the satellite observations by Thermosphere Ionosphere and Mesosphere Electric Dynamics (TIMED)/Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) TIMED/SABER that are not assimilated in MERRA-2. Our study shows that the zonal mean wind and temperature and planetary wave 1 and 2 variations are generally consistent between the reanalysis and observations. We also identify a strong ∼6 day wave propagating both westward and eastward with zonal wavenumber-1 with the westward propagating component likely generated by baroclinic/barotropic instability. However, important disagreements arise specifically above ∼60 km, where the wind and temperature are not well represented in MERRA-2, causing differences in the day-to-day development of 6 day wave. This study highlights the need for additional assimilation of mesospheric data and development of high-altitude vertically extended GEOS model.</p>","PeriodicalId":15894,"journal":{"name":"Journal of Geophysical Research: Space Physics","volume":"130 4","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamical Response of the Middle and Upper Atmosphere to the February 2018 Sudden Stratospheric Warming Revealed by MERRA-2 and SABER\",\"authors\":\"Guiping Liu, Fabrizio Sassi, Ruth S. Lieberman, Lawrence Coy, Steven Pawson\",\"doi\":\"10.1029/2024JA033528\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The middle and upper atmosphere plays a critical role in linking the lower atmosphere forcing with ionospheric variability, especially during strong atmospheric activities. This study examines the dynamical response in the altitude range from ∼20 to 80 km to a major Sudden Stratospheric Warming (SSW) event peaking on 11 February 2018. We compare the reanalysis product of the Modern-Era Retrospective Analysis for Research and Applications Version 2 (MERRA-2) from the Goddard Earth Observing System (GEOS) to the satellite observations by Thermosphere Ionosphere and Mesosphere Electric Dynamics (TIMED)/Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) TIMED/SABER that are not assimilated in MERRA-2. Our study shows that the zonal mean wind and temperature and planetary wave 1 and 2 variations are generally consistent between the reanalysis and observations. We also identify a strong ∼6 day wave propagating both westward and eastward with zonal wavenumber-1 with the westward propagating component likely generated by baroclinic/barotropic instability. However, important disagreements arise specifically above ∼60 km, where the wind and temperature are not well represented in MERRA-2, causing differences in the day-to-day development of 6 day wave. This study highlights the need for additional assimilation of mesospheric data and development of high-altitude vertically extended GEOS model.</p>\",\"PeriodicalId\":15894,\"journal\":{\"name\":\"Journal of Geophysical Research: Space Physics\",\"volume\":\"130 4\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Space Physics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024JA033528\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Space Physics","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JA033528","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Dynamical Response of the Middle and Upper Atmosphere to the February 2018 Sudden Stratospheric Warming Revealed by MERRA-2 and SABER
The middle and upper atmosphere plays a critical role in linking the lower atmosphere forcing with ionospheric variability, especially during strong atmospheric activities. This study examines the dynamical response in the altitude range from ∼20 to 80 km to a major Sudden Stratospheric Warming (SSW) event peaking on 11 February 2018. We compare the reanalysis product of the Modern-Era Retrospective Analysis for Research and Applications Version 2 (MERRA-2) from the Goddard Earth Observing System (GEOS) to the satellite observations by Thermosphere Ionosphere and Mesosphere Electric Dynamics (TIMED)/Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) TIMED/SABER that are not assimilated in MERRA-2. Our study shows that the zonal mean wind and temperature and planetary wave 1 and 2 variations are generally consistent between the reanalysis and observations. We also identify a strong ∼6 day wave propagating both westward and eastward with zonal wavenumber-1 with the westward propagating component likely generated by baroclinic/barotropic instability. However, important disagreements arise specifically above ∼60 km, where the wind and temperature are not well represented in MERRA-2, causing differences in the day-to-day development of 6 day wave. This study highlights the need for additional assimilation of mesospheric data and development of high-altitude vertically extended GEOS model.