{"title":"与有机改进剂共同应用可增强风化作用","authors":"Maya Almaraz","doi":"10.1029/2025AV001693","DOIUrl":null,"url":null,"abstract":"<p>Enhanced weathering has emerged as a promising natural climate solution that has the potential to remove billions of tons of carbon from the atmosphere if widely adopted in agricultural settings. Despite this potential, few field trials have been published that verify the carbon dioxide removal (CDR) potential of enhanced weathering in croplands and, until now, none had been published in grazing lands. Anthony et al. (2025, https://doi.org/10.1029/2024AV001480) conducted the first trial of enhanced weathering in a California rangeland and showed weathering of ground silicate rocks despite drought conditions in an already dry climate. Co-application of inorganic (silicate rocks) with organic (biochar and compost) amendments revealed not just additive, but synergistic effects whereby organic amendments increased rates of weathering. This is important because field CDR rates were <10% of the theoretical maximum (i.e., the rate if basalt was completely weathered); thus, methods to improve weathering rates will be necessary for this practice to scale in a meaningful way. Multi-carbon pool measurements revealed not only how co-application of soil amendments heightened net carbon benefits, but also how soil amendments complemented each other to produce net benefits for soil carbon, biomass growth, and greenhouse gas emission reductions. Anthony et al. (2025, https://doi.org/10.1029/2024AV001480) produce new insights toward our understanding of enhanced weathering as well as introduce paths for future research concerning combined amendment applications, synergistic mechanisms for carbon storage, and deployment in various agricultural contexts. While questions remain about the fate of weathering products in arid regions, Anthony et al. (2025, https://doi.org/10.1029/2024AV001480) present novel findings on the potential for significant weathering to occur even under suboptimal conditions.</p>","PeriodicalId":100067,"journal":{"name":"AGU Advances","volume":"6 2","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2025AV001693","citationCount":"0","resultStr":"{\"title\":\"Enhanced Weathering May Benefit From Co-Application With Organic Amendments\",\"authors\":\"Maya Almaraz\",\"doi\":\"10.1029/2025AV001693\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Enhanced weathering has emerged as a promising natural climate solution that has the potential to remove billions of tons of carbon from the atmosphere if widely adopted in agricultural settings. Despite this potential, few field trials have been published that verify the carbon dioxide removal (CDR) potential of enhanced weathering in croplands and, until now, none had been published in grazing lands. Anthony et al. (2025, https://doi.org/10.1029/2024AV001480) conducted the first trial of enhanced weathering in a California rangeland and showed weathering of ground silicate rocks despite drought conditions in an already dry climate. Co-application of inorganic (silicate rocks) with organic (biochar and compost) amendments revealed not just additive, but synergistic effects whereby organic amendments increased rates of weathering. This is important because field CDR rates were <10% of the theoretical maximum (i.e., the rate if basalt was completely weathered); thus, methods to improve weathering rates will be necessary for this practice to scale in a meaningful way. Multi-carbon pool measurements revealed not only how co-application of soil amendments heightened net carbon benefits, but also how soil amendments complemented each other to produce net benefits for soil carbon, biomass growth, and greenhouse gas emission reductions. Anthony et al. (2025, https://doi.org/10.1029/2024AV001480) produce new insights toward our understanding of enhanced weathering as well as introduce paths for future research concerning combined amendment applications, synergistic mechanisms for carbon storage, and deployment in various agricultural contexts. While questions remain about the fate of weathering products in arid regions, Anthony et al. (2025, https://doi.org/10.1029/2024AV001480) present novel findings on the potential for significant weathering to occur even under suboptimal conditions.</p>\",\"PeriodicalId\":100067,\"journal\":{\"name\":\"AGU Advances\",\"volume\":\"6 2\",\"pages\":\"\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2025AV001693\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AGU Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2025AV001693\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AGU Advances","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2025AV001693","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Enhanced Weathering May Benefit From Co-Application With Organic Amendments
Enhanced weathering has emerged as a promising natural climate solution that has the potential to remove billions of tons of carbon from the atmosphere if widely adopted in agricultural settings. Despite this potential, few field trials have been published that verify the carbon dioxide removal (CDR) potential of enhanced weathering in croplands and, until now, none had been published in grazing lands. Anthony et al. (2025, https://doi.org/10.1029/2024AV001480) conducted the first trial of enhanced weathering in a California rangeland and showed weathering of ground silicate rocks despite drought conditions in an already dry climate. Co-application of inorganic (silicate rocks) with organic (biochar and compost) amendments revealed not just additive, but synergistic effects whereby organic amendments increased rates of weathering. This is important because field CDR rates were <10% of the theoretical maximum (i.e., the rate if basalt was completely weathered); thus, methods to improve weathering rates will be necessary for this practice to scale in a meaningful way. Multi-carbon pool measurements revealed not only how co-application of soil amendments heightened net carbon benefits, but also how soil amendments complemented each other to produce net benefits for soil carbon, biomass growth, and greenhouse gas emission reductions. Anthony et al. (2025, https://doi.org/10.1029/2024AV001480) produce new insights toward our understanding of enhanced weathering as well as introduce paths for future research concerning combined amendment applications, synergistic mechanisms for carbon storage, and deployment in various agricultural contexts. While questions remain about the fate of weathering products in arid regions, Anthony et al. (2025, https://doi.org/10.1029/2024AV001480) present novel findings on the potential for significant weathering to occur even under suboptimal conditions.