Qingqing You, Jingwei Liu, Ran Zhang, Zhi Wang, Bingying Zhang, Wencong Guo, Ning Xu, Irene Bottillo, Leping Shao
{"title":"结核性硬化症外显子TSC1和TSC2基因变异的剪接分析","authors":"Qingqing You, Jingwei Liu, Ran Zhang, Zhi Wang, Bingying Zhang, Wencong Guo, Ning Xu, Irene Bottillo, Leping Shao","doi":"10.1155/humu/1497712","DOIUrl":null,"url":null,"abstract":"<p>Tuberous sclerosis complex (TSC) is characterized by abnormalities in cell proliferation and migration, leading to the development of hamartomas, benign tumors, or malignant cancers, affecting both the skin and brain, as well as potentially impacting the heart, kidneys, lungs, and eyes, with varying patterns of involvement over a lifetime. It is primarily caused by mutations in the TSC1 and TSC2 genes. Aberrant splicing is a crucial factor in hereditary diseases. Alternative splicing is a key mechanism for expanding the diversity of the human proteome. Mutations disrupting canonical splice sites or splicing regulatory elements impede the utilization of splice sites, leading to exon skipping and intron retention. We comprehensively analyzed missense and nonsense mutations of TSC1 and TSC2 genes using bioinformatics tools and identified 10 candidate mutations affecting pre-mRNA splicing through minigene analysis. Mutations in TSC genes can lead to partial or complete exon skipping and/or intron retention through complex mechanisms. This study emphasizes the importance of evaluating their roles in the splicing of suspected pathogenic variants in TSC.</p>","PeriodicalId":13061,"journal":{"name":"Human Mutation","volume":"2025 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/humu/1497712","citationCount":"0","resultStr":"{\"title\":\"Splicing Analysis of Exonic TSC1 and TSC2 Gene Variants Causing Tuberous Sclerosis Complex\",\"authors\":\"Qingqing You, Jingwei Liu, Ran Zhang, Zhi Wang, Bingying Zhang, Wencong Guo, Ning Xu, Irene Bottillo, Leping Shao\",\"doi\":\"10.1155/humu/1497712\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Tuberous sclerosis complex (TSC) is characterized by abnormalities in cell proliferation and migration, leading to the development of hamartomas, benign tumors, or malignant cancers, affecting both the skin and brain, as well as potentially impacting the heart, kidneys, lungs, and eyes, with varying patterns of involvement over a lifetime. It is primarily caused by mutations in the TSC1 and TSC2 genes. Aberrant splicing is a crucial factor in hereditary diseases. Alternative splicing is a key mechanism for expanding the diversity of the human proteome. Mutations disrupting canonical splice sites or splicing regulatory elements impede the utilization of splice sites, leading to exon skipping and intron retention. We comprehensively analyzed missense and nonsense mutations of TSC1 and TSC2 genes using bioinformatics tools and identified 10 candidate mutations affecting pre-mRNA splicing through minigene analysis. Mutations in TSC genes can lead to partial or complete exon skipping and/or intron retention through complex mechanisms. This study emphasizes the importance of evaluating their roles in the splicing of suspected pathogenic variants in TSC.</p>\",\"PeriodicalId\":13061,\"journal\":{\"name\":\"Human Mutation\",\"volume\":\"2025 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/humu/1497712\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human Mutation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/humu/1497712\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Mutation","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/humu/1497712","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Splicing Analysis of Exonic TSC1 and TSC2 Gene Variants Causing Tuberous Sclerosis Complex
Tuberous sclerosis complex (TSC) is characterized by abnormalities in cell proliferation and migration, leading to the development of hamartomas, benign tumors, or malignant cancers, affecting both the skin and brain, as well as potentially impacting the heart, kidneys, lungs, and eyes, with varying patterns of involvement over a lifetime. It is primarily caused by mutations in the TSC1 and TSC2 genes. Aberrant splicing is a crucial factor in hereditary diseases. Alternative splicing is a key mechanism for expanding the diversity of the human proteome. Mutations disrupting canonical splice sites or splicing regulatory elements impede the utilization of splice sites, leading to exon skipping and intron retention. We comprehensively analyzed missense and nonsense mutations of TSC1 and TSC2 genes using bioinformatics tools and identified 10 candidate mutations affecting pre-mRNA splicing through minigene analysis. Mutations in TSC genes can lead to partial or complete exon skipping and/or intron retention through complex mechanisms. This study emphasizes the importance of evaluating their roles in the splicing of suspected pathogenic variants in TSC.
期刊介绍:
Human Mutation is a peer-reviewed journal that offers publication of original Research Articles, Methods, Mutation Updates, Reviews, Database Articles, Rapid Communications, and Letters on broad aspects of mutation research in humans. Reports of novel DNA variations and their phenotypic consequences, reports of SNPs demonstrated as valuable for genomic analysis, descriptions of new molecular detection methods, and novel approaches to clinical diagnosis are welcomed. Novel reports of gene organization at the genomic level, reported in the context of mutation investigation, may be considered. The journal provides a unique forum for the exchange of ideas, methods, and applications of interest to molecular, human, and medical geneticists in academic, industrial, and clinical research settings worldwide.