基于深度学习的小角度散射分解

IF 5.2 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Weigang Zhou, Xiuguo Chen, Jiahao Zhang, Shuo Liu, Dingxuan Deng, Shilong Yang, Zirong Tang, Shiyuan Liu
{"title":"基于深度学习的小角度散射分解","authors":"Weigang Zhou,&nbsp;Xiuguo Chen,&nbsp;Jiahao Zhang,&nbsp;Shuo Liu,&nbsp;Dingxuan Deng,&nbsp;Shilong Yang,&nbsp;Zirong Tang,&nbsp;Shiyuan Liu","doi":"10.1107/S1600576725000494","DOIUrl":null,"url":null,"abstract":"<p>Smearing effects in small-angle scattering (SAS) measurements significantly compromise data analysis, arising from the convolution of theoretical scattering curves with the point spread function of the measurement system. This paper presents a deep-learning-based desmearing network (DSNet) designed to effectively mitigate smearing effects in SAS data. By integrating the processes underlying scattering data smearing, DSNet necessitates only a limited simulation dataset for pre-training. Both simulation and experimental results have demonstrated that DSNet exhibits robust noise resilience and exceptional generalization performance across diverse sample types, and achieves superior desmearing capabilities compared with the classical Lake method and Wiener filter.</p>","PeriodicalId":48737,"journal":{"name":"Journal of Applied Crystallography","volume":"58 2","pages":"504-512"},"PeriodicalIF":5.2000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep-learning-powered desmearing for small-angle scattering\",\"authors\":\"Weigang Zhou,&nbsp;Xiuguo Chen,&nbsp;Jiahao Zhang,&nbsp;Shuo Liu,&nbsp;Dingxuan Deng,&nbsp;Shilong Yang,&nbsp;Zirong Tang,&nbsp;Shiyuan Liu\",\"doi\":\"10.1107/S1600576725000494\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Smearing effects in small-angle scattering (SAS) measurements significantly compromise data analysis, arising from the convolution of theoretical scattering curves with the point spread function of the measurement system. This paper presents a deep-learning-based desmearing network (DSNet) designed to effectively mitigate smearing effects in SAS data. By integrating the processes underlying scattering data smearing, DSNet necessitates only a limited simulation dataset for pre-training. Both simulation and experimental results have demonstrated that DSNet exhibits robust noise resilience and exceptional generalization performance across diverse sample types, and achieves superior desmearing capabilities compared with the classical Lake method and Wiener filter.</p>\",\"PeriodicalId\":48737,\"journal\":{\"name\":\"Journal of Applied Crystallography\",\"volume\":\"58 2\",\"pages\":\"504-512\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Crystallography\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1107/S1600576725000494\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Crystallography","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1107/S1600576725000494","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在小角散射(SAS)测量中,由于理论散射曲线与测量系统的点扩展函数的卷积,导致散射效应严重影响数据分析。本文提出了一种基于深度学习的去屑网络(DSNet),旨在有效地减轻SAS数据中的涂抹效应。通过整合散射数据涂抹的过程,DSNet只需要有限的模拟数据集进行预训练。仿真和实验结果都表明,DSNet在不同的样本类型中表现出强大的噪声恢复能力和出色的泛化性能,与经典的Lake方法和Wiener滤波器相比,具有更好的去噪能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Deep-learning-powered desmearing for small-angle scattering

Deep-learning-powered desmearing for small-angle scattering

Smearing effects in small-angle scattering (SAS) measurements significantly compromise data analysis, arising from the convolution of theoretical scattering curves with the point spread function of the measurement system. This paper presents a deep-learning-based desmearing network (DSNet) designed to effectively mitigate smearing effects in SAS data. By integrating the processes underlying scattering data smearing, DSNet necessitates only a limited simulation dataset for pre-training. Both simulation and experimental results have demonstrated that DSNet exhibits robust noise resilience and exceptional generalization performance across diverse sample types, and achieves superior desmearing capabilities compared with the classical Lake method and Wiener filter.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Crystallography
Journal of Applied Crystallography CHEMISTRY, MULTIDISCIPLINARYCRYSTALLOGRAPH-CRYSTALLOGRAPHY
CiteScore
7.80
自引率
3.30%
发文量
178
期刊介绍: Many research topics in condensed matter research, materials science and the life sciences make use of crystallographic methods to study crystalline and non-crystalline matter with neutrons, X-rays and electrons. Articles published in the Journal of Applied Crystallography focus on these methods and their use in identifying structural and diffusion-controlled phase transformations, structure-property relationships, structural changes of defects, interfaces and surfaces, etc. Developments of instrumentation and crystallographic apparatus, theory and interpretation, numerical analysis and other related subjects are also covered. The journal is the primary place where crystallographic computer program information is published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信