Lili Xu, Jianchun Wu, Jianhui Tian, Bo Zhang, Yang Zhao, Zhenyu Zhao, Yingbin Luo, Yan Li
{"title":"机器学习揭示鞘脂代谢在肿瘤微环境和肺癌免疫治疗中的作用","authors":"Lili Xu, Jianchun Wu, Jianhui Tian, Bo Zhang, Yang Zhao, Zhenyu Zhao, Yingbin Luo, Yan Li","doi":"10.1111/jcmm.70435","DOIUrl":null,"url":null,"abstract":"<p>TME is a core player in the development of a cancerous lesion, the immune evasive potential of the lesion, and its response to therapy. Sphingolipid metabolism, which governs a number of cellular processes, has been recognised as a player involved in the control of immune heterogeneity within the TME. Sphingolipid metabolism-related genes prevalent in the TME of LUAD and LUSC were identified using transcriptomic analysis and clinical samples from the TCGA and GTEx databases. Lasso regression and survival SVM in the Etra Application were employed as machine learning algorithms to determine patient outcomes and to reveal key immune factors associated with gene expression and chemotherapeutic response. Gene expression in lung cancer cells was explored through scRNA-seq data. Thereafter, mediation impact analysis was further performed to explain the defined relation between the immune cell subsets and sphingolipid metabolites and their risk impact on lung cancers. Genes involved in sphingolipid metabolism were dysregulated in lung cancer, correlating with immune cell infiltration and TME remodelling. Lasso regression identified ASAH1 and SMPD1 as strong prognostic markers. scRNA-seq revealed higher gene expression in T cells, macrophages and fibroblasts. Sphingomyelin partially mediated the link between T lymphocyte abundance and lung cancer risk. High-risk phenotypes exhibited enhanced immune evasion via altered regulatory T cell and macrophage polarisation. This research highlights the contribution of sphingolipid metabolism in shaping the TME and its implications for immunotherapy.</p>","PeriodicalId":101321,"journal":{"name":"JOURNAL OF CELLULAR AND MOLECULAR MEDICINE","volume":"29 7","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jcmm.70435","citationCount":"0","resultStr":"{\"title\":\"Machine Learning Unveils Sphingolipid Metabolism's Role in Tumour Microenvironment and Immunotherapy in Lung Cancer\",\"authors\":\"Lili Xu, Jianchun Wu, Jianhui Tian, Bo Zhang, Yang Zhao, Zhenyu Zhao, Yingbin Luo, Yan Li\",\"doi\":\"10.1111/jcmm.70435\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>TME is a core player in the development of a cancerous lesion, the immune evasive potential of the lesion, and its response to therapy. Sphingolipid metabolism, which governs a number of cellular processes, has been recognised as a player involved in the control of immune heterogeneity within the TME. Sphingolipid metabolism-related genes prevalent in the TME of LUAD and LUSC were identified using transcriptomic analysis and clinical samples from the TCGA and GTEx databases. Lasso regression and survival SVM in the Etra Application were employed as machine learning algorithms to determine patient outcomes and to reveal key immune factors associated with gene expression and chemotherapeutic response. Gene expression in lung cancer cells was explored through scRNA-seq data. Thereafter, mediation impact analysis was further performed to explain the defined relation between the immune cell subsets and sphingolipid metabolites and their risk impact on lung cancers. Genes involved in sphingolipid metabolism were dysregulated in lung cancer, correlating with immune cell infiltration and TME remodelling. Lasso regression identified ASAH1 and SMPD1 as strong prognostic markers. scRNA-seq revealed higher gene expression in T cells, macrophages and fibroblasts. Sphingomyelin partially mediated the link between T lymphocyte abundance and lung cancer risk. High-risk phenotypes exhibited enhanced immune evasion via altered regulatory T cell and macrophage polarisation. This research highlights the contribution of sphingolipid metabolism in shaping the TME and its implications for immunotherapy.</p>\",\"PeriodicalId\":101321,\"journal\":{\"name\":\"JOURNAL OF CELLULAR AND MOLECULAR MEDICINE\",\"volume\":\"29 7\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jcmm.70435\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JOURNAL OF CELLULAR AND MOLECULAR MEDICINE\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jcmm.70435\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF CELLULAR AND MOLECULAR MEDICINE","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jcmm.70435","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Machine Learning Unveils Sphingolipid Metabolism's Role in Tumour Microenvironment and Immunotherapy in Lung Cancer
TME is a core player in the development of a cancerous lesion, the immune evasive potential of the lesion, and its response to therapy. Sphingolipid metabolism, which governs a number of cellular processes, has been recognised as a player involved in the control of immune heterogeneity within the TME. Sphingolipid metabolism-related genes prevalent in the TME of LUAD and LUSC were identified using transcriptomic analysis and clinical samples from the TCGA and GTEx databases. Lasso regression and survival SVM in the Etra Application were employed as machine learning algorithms to determine patient outcomes and to reveal key immune factors associated with gene expression and chemotherapeutic response. Gene expression in lung cancer cells was explored through scRNA-seq data. Thereafter, mediation impact analysis was further performed to explain the defined relation between the immune cell subsets and sphingolipid metabolites and their risk impact on lung cancers. Genes involved in sphingolipid metabolism were dysregulated in lung cancer, correlating with immune cell infiltration and TME remodelling. Lasso regression identified ASAH1 and SMPD1 as strong prognostic markers. scRNA-seq revealed higher gene expression in T cells, macrophages and fibroblasts. Sphingomyelin partially mediated the link between T lymphocyte abundance and lung cancer risk. High-risk phenotypes exhibited enhanced immune evasion via altered regulatory T cell and macrophage polarisation. This research highlights the contribution of sphingolipid metabolism in shaping the TME and its implications for immunotherapy.
期刊介绍:
The Journal of Cellular and Molecular Medicine serves as a bridge between physiology and cellular medicine, as well as molecular biology and molecular therapeutics. With a 20-year history, the journal adopts an interdisciplinary approach to showcase innovative discoveries.
It publishes research aimed at advancing the collective understanding of the cellular and molecular mechanisms underlying diseases. The journal emphasizes translational studies that translate this knowledge into therapeutic strategies. Being fully open access, the journal is accessible to all readers.