Ziang Yao, Jun Fan, Yucheng Bai, Jiakai He, Xiang Zhang, Renquan Zhang, Lei Xue
{"title":"揭示癌症免疫:凝固。sig和BIRC2作为预测性免疫治疗的架构师","authors":"Ziang Yao, Jun Fan, Yucheng Bai, Jiakai He, Xiang Zhang, Renquan Zhang, Lei Xue","doi":"10.1111/jcmm.70525","DOIUrl":null,"url":null,"abstract":"<p>Immune checkpoint inhibitors (ICIs) represent a groundbreaking advancement in cancer therapy, substantially improving patient survival rates. Our comprehensive research reveals a significant positive correlation between coagulation scores and immune-related gene expression across 30 diverse cancer types. Notably, tumours exhibiting high coagulation scores demonstrated enhanced infiltration of cytotoxic immune cells, including CD8<sup>+</sup> T cells, natural killer (NK) cells, and macrophages. Leveraging the TCGA pan-cancer database, we developed the Coagulation.Sig model, a sophisticated predictive framework utilising a coagulation-related genes (CRGs) to forecast immunotherapy outcomes. Through rigorous analysis of ten ICI-treated cohorts, we identified and validated seven critical CRGs: BIRC2, HMGB1, STAT2, IFNAR1, BID, SPATA2, IL33 and IFNG, which form the foundation of our predictive model. Functional analyses revealed that low-risk tumours characterised by higher immune cell populations, particularly CD8<sup>+</sup> T cells, demonstrated superior ICI responses. These tumours also exhibited increased mutation rates, elevated neoantigen loads, and greater TCR/BCR diversity. Conversely, high-risk tumours displayed pronounced intratumor heterogeneity (ITH) and elevated NRF2 pathway activity, mechanisms strongly associated with immune evasion. Experimental validation highlighted BIRC2 as a promising therapeutic target. Targeted BIRC2 knockdown, when combined with anti-PD-1 therapy, significantly suppressed tumour growth, enhanced CD8<sup>+</sup> T cell infiltration, and amplified IFN-γ and TNF-α secretion in tumour models. Our findings position the Coagulation.Sig model as a novel, comprehensive approach to personalised cancer treatment, with BIRC2 emerging as both a predictive biomarker and a potential therapeutic intervention point.</p>","PeriodicalId":101321,"journal":{"name":"JOURNAL OF CELLULAR AND MOLECULAR MEDICINE","volume":"29 7","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jcmm.70525","citationCount":"0","resultStr":"{\"title\":\"Unravelling Cancer Immunity: Coagulation.Sig and BIRC2 as Predictive Immunotherapeutic Architects\",\"authors\":\"Ziang Yao, Jun Fan, Yucheng Bai, Jiakai He, Xiang Zhang, Renquan Zhang, Lei Xue\",\"doi\":\"10.1111/jcmm.70525\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Immune checkpoint inhibitors (ICIs) represent a groundbreaking advancement in cancer therapy, substantially improving patient survival rates. Our comprehensive research reveals a significant positive correlation between coagulation scores and immune-related gene expression across 30 diverse cancer types. Notably, tumours exhibiting high coagulation scores demonstrated enhanced infiltration of cytotoxic immune cells, including CD8<sup>+</sup> T cells, natural killer (NK) cells, and macrophages. Leveraging the TCGA pan-cancer database, we developed the Coagulation.Sig model, a sophisticated predictive framework utilising a coagulation-related genes (CRGs) to forecast immunotherapy outcomes. Through rigorous analysis of ten ICI-treated cohorts, we identified and validated seven critical CRGs: BIRC2, HMGB1, STAT2, IFNAR1, BID, SPATA2, IL33 and IFNG, which form the foundation of our predictive model. Functional analyses revealed that low-risk tumours characterised by higher immune cell populations, particularly CD8<sup>+</sup> T cells, demonstrated superior ICI responses. These tumours also exhibited increased mutation rates, elevated neoantigen loads, and greater TCR/BCR diversity. Conversely, high-risk tumours displayed pronounced intratumor heterogeneity (ITH) and elevated NRF2 pathway activity, mechanisms strongly associated with immune evasion. Experimental validation highlighted BIRC2 as a promising therapeutic target. Targeted BIRC2 knockdown, when combined with anti-PD-1 therapy, significantly suppressed tumour growth, enhanced CD8<sup>+</sup> T cell infiltration, and amplified IFN-γ and TNF-α secretion in tumour models. Our findings position the Coagulation.Sig model as a novel, comprehensive approach to personalised cancer treatment, with BIRC2 emerging as both a predictive biomarker and a potential therapeutic intervention point.</p>\",\"PeriodicalId\":101321,\"journal\":{\"name\":\"JOURNAL OF CELLULAR AND MOLECULAR MEDICINE\",\"volume\":\"29 7\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jcmm.70525\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JOURNAL OF CELLULAR AND MOLECULAR MEDICINE\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jcmm.70525\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF CELLULAR AND MOLECULAR MEDICINE","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jcmm.70525","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Unravelling Cancer Immunity: Coagulation.Sig and BIRC2 as Predictive Immunotherapeutic Architects
Immune checkpoint inhibitors (ICIs) represent a groundbreaking advancement in cancer therapy, substantially improving patient survival rates. Our comprehensive research reveals a significant positive correlation between coagulation scores and immune-related gene expression across 30 diverse cancer types. Notably, tumours exhibiting high coagulation scores demonstrated enhanced infiltration of cytotoxic immune cells, including CD8+ T cells, natural killer (NK) cells, and macrophages. Leveraging the TCGA pan-cancer database, we developed the Coagulation.Sig model, a sophisticated predictive framework utilising a coagulation-related genes (CRGs) to forecast immunotherapy outcomes. Through rigorous analysis of ten ICI-treated cohorts, we identified and validated seven critical CRGs: BIRC2, HMGB1, STAT2, IFNAR1, BID, SPATA2, IL33 and IFNG, which form the foundation of our predictive model. Functional analyses revealed that low-risk tumours characterised by higher immune cell populations, particularly CD8+ T cells, demonstrated superior ICI responses. These tumours also exhibited increased mutation rates, elevated neoantigen loads, and greater TCR/BCR diversity. Conversely, high-risk tumours displayed pronounced intratumor heterogeneity (ITH) and elevated NRF2 pathway activity, mechanisms strongly associated with immune evasion. Experimental validation highlighted BIRC2 as a promising therapeutic target. Targeted BIRC2 knockdown, when combined with anti-PD-1 therapy, significantly suppressed tumour growth, enhanced CD8+ T cell infiltration, and amplified IFN-γ and TNF-α secretion in tumour models. Our findings position the Coagulation.Sig model as a novel, comprehensive approach to personalised cancer treatment, with BIRC2 emerging as both a predictive biomarker and a potential therapeutic intervention point.
期刊介绍:
The Journal of Cellular and Molecular Medicine serves as a bridge between physiology and cellular medicine, as well as molecular biology and molecular therapeutics. With a 20-year history, the journal adopts an interdisciplinary approach to showcase innovative discoveries.
It publishes research aimed at advancing the collective understanding of the cellular and molecular mechanisms underlying diseases. The journal emphasizes translational studies that translate this knowledge into therapeutic strategies. Being fully open access, the journal is accessible to all readers.