The persistent presence of antibiotics in aquatic ecosystems poses severe risks to environmental and human health. Herein, we report a novel dopamine-modified Fe3O4@C@DA nanocomposite synthesized via covalent amidation for efficient antibiotic removal. The material’s core–shell structure integrates Fe3O4 nanoparticles with a carbon matrix, functionalized by dopamine to enhance hydrophilicity and stability. Comprehensive characterization confirmed successful dopamine grafting, yielding a superparamagnetic adsorbent (41.0 emu/g). The adsorbent demonstrated exceptional performance for ciprofloxacin (CIP) and tetracycline (TC), achieving maximum capacities of 42.5 mg/g (CIP) and 28.4 mg/g (TC). Kinetic studies revealed rapid equilibration within 8 h (CIP) and 6 h (TC), well-described by pseudo-second-order kinetics (R2 > 0.999), while Langmuir isotherms (R2 > 0.98) indicated monolayer chemisorption dominated by hydrogen bonding, π-π interactions, and electrostatic attraction. Remarkably, the material retained > 60% adsorption efficiency after five regeneration cycles. This work advances antibiotic remediation by synergizing covalent functionalization, multi-mechanistic adsorption, and scalable design, offering a sustainable solution for water purification.