氧化石墨烯增强PGDLLA/P(lLA-co- cl)/PCL界面脱粘的多尺度建模:研究流变学和力学性能、相容性和形态

IF 5.5 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Ehsan Vafa, Mohammad Barghamadi, Somayeh Parham, Katayoon Rezaeeparto, Mohammad Bagher Zarei, Mohammad Javad Azizli, Mohammad Ali Amani, Hesam Kamyab, Shreeshivadasan Chelliapan
{"title":"氧化石墨烯增强PGDLLA/P(lLA-co- cl)/PCL界面脱粘的多尺度建模:研究流变学和力学性能、相容性和形态","authors":"Ehsan Vafa,&nbsp;Mohammad Barghamadi,&nbsp;Somayeh Parham,&nbsp;Katayoon Rezaeeparto,&nbsp;Mohammad Bagher Zarei,&nbsp;Mohammad Javad Azizli,&nbsp;Mohammad Ali Amani,&nbsp;Hesam Kamyab,&nbsp;Shreeshivadasan Chelliapan","doi":"10.1007/s42823-024-00793-3","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, poly(glycolic acid–co-DL–lactic acid) (PGDLLA)/poly(ɛ-caprolactone) (PCL) incompatible nanocomposites were combined with multiscale modeling (MSM) in a ratio of 80/20. Since the behavior and mechanical properties of blends depend significantly on the interphase region, the compatibilizer poly(<i>l,l</i>-lactic acid<i>–co-ɛ-</i>caprolactone) (P(<i>l</i>LA<i>-co-ɛ-</i>CL)) was used to improve compatibility and graphene oxide (GO) was used to increase the interphase strength of PGDLLA matrix/PCL. This work was done by mixing solvent to achieve the optimum disperse of GO in the matrix. The investigation of interfacial phenomenon by the theoretical interfacial models is important. Under the assumption of constant modulus and elastic deformation in the zero interface region, the predictions in this region are more unreliable when the calculations of experimental mechanical properties are analyzed in detail. In this study, PGDLLA/P(lLA-co-ɛ-CL)/PCL compounds were compared with the MSM approach to predict the plastic deformation in the stress–strain behavior. In contrast to the hypothesis that a simple look at the interphase area in nanocomposites, a finite element code is proposed to evaluate the efficiency of the interphase area. Both experimental results and FEM analysis showed that Young’s modulus increases by incorporating GO into GO/PGDLLA/P(<i>l</i>LA-co-ɛ-CL)/PCL nanocomposites; the amount of increase for incorporating 1 phr GO is about 61%.</p></div>","PeriodicalId":506,"journal":{"name":"Carbon Letters","volume":"35 2","pages":"553 - 573"},"PeriodicalIF":5.5000,"publicationDate":"2024-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Graphene oxide-enhanced multiscale modeling of PGDLLA/P(lLA-co-ɛ-CL)/PCL interfacial debonding: investigating rheological and mechanical properties, compatibility, and morphology\",\"authors\":\"Ehsan Vafa,&nbsp;Mohammad Barghamadi,&nbsp;Somayeh Parham,&nbsp;Katayoon Rezaeeparto,&nbsp;Mohammad Bagher Zarei,&nbsp;Mohammad Javad Azizli,&nbsp;Mohammad Ali Amani,&nbsp;Hesam Kamyab,&nbsp;Shreeshivadasan Chelliapan\",\"doi\":\"10.1007/s42823-024-00793-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, poly(glycolic acid–co-DL–lactic acid) (PGDLLA)/poly(ɛ-caprolactone) (PCL) incompatible nanocomposites were combined with multiscale modeling (MSM) in a ratio of 80/20. Since the behavior and mechanical properties of blends depend significantly on the interphase region, the compatibilizer poly(<i>l,l</i>-lactic acid<i>–co-ɛ-</i>caprolactone) (P(<i>l</i>LA<i>-co-ɛ-</i>CL)) was used to improve compatibility and graphene oxide (GO) was used to increase the interphase strength of PGDLLA matrix/PCL. This work was done by mixing solvent to achieve the optimum disperse of GO in the matrix. The investigation of interfacial phenomenon by the theoretical interfacial models is important. Under the assumption of constant modulus and elastic deformation in the zero interface region, the predictions in this region are more unreliable when the calculations of experimental mechanical properties are analyzed in detail. In this study, PGDLLA/P(lLA-co-ɛ-CL)/PCL compounds were compared with the MSM approach to predict the plastic deformation in the stress–strain behavior. In contrast to the hypothesis that a simple look at the interphase area in nanocomposites, a finite element code is proposed to evaluate the efficiency of the interphase area. Both experimental results and FEM analysis showed that Young’s modulus increases by incorporating GO into GO/PGDLLA/P(<i>l</i>LA-co-ɛ-CL)/PCL nanocomposites; the amount of increase for incorporating 1 phr GO is about 61%.</p></div>\",\"PeriodicalId\":506,\"journal\":{\"name\":\"Carbon Letters\",\"volume\":\"35 2\",\"pages\":\"553 - 573\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42823-024-00793-3\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42823-024-00793-3","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文采用多尺度模型(MSM),以80/20的比例组合聚乙醇酸- co- dl -乳酸(PGDLLA)/聚己内酯(PCL)不相容纳米复合材料。由于共混物的行为和力学性能在很大程度上取决于相区,因此使用相容剂聚(l,l-乳酸-co- α -己内酯)(P(la -co- α - cl))来改善相容性,并使用氧化石墨烯(GO)来提高PGDLLA基质/PCL的相强度。这项工作是通过混合溶剂来实现氧化石墨烯在基质中的最佳分散。理论界面模型对界面现象的研究具有重要意义。在恒模量和零界面区弹性变形的假设下,对实验力学性能的计算进行了详细分析,该区域的预测更不可靠。在本研究中,PGDLLA/P(lLA-co- cl)/PCL化合物与MSM方法进行了比较,以预测应力-应变行为中的塑性变形。与简单观察纳米复合材料间相面积的假设相反,提出了一个有限元程序来评估间相面积的效率。实验结果和有限元分析均表明,在GO/PGDLLA/P(lLA-co- l - cl)/PCL纳米复合材料中加入氧化石墨烯可提高杨氏模量;加入1 phr GO的增幅约为61%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Graphene oxide-enhanced multiscale modeling of PGDLLA/P(lLA-co-ɛ-CL)/PCL interfacial debonding: investigating rheological and mechanical properties, compatibility, and morphology

In this paper, poly(glycolic acid–co-DL–lactic acid) (PGDLLA)/poly(ɛ-caprolactone) (PCL) incompatible nanocomposites were combined with multiscale modeling (MSM) in a ratio of 80/20. Since the behavior and mechanical properties of blends depend significantly on the interphase region, the compatibilizer poly(l,l-lactic acid–co-ɛ-caprolactone) (P(lLA-co-ɛ-CL)) was used to improve compatibility and graphene oxide (GO) was used to increase the interphase strength of PGDLLA matrix/PCL. This work was done by mixing solvent to achieve the optimum disperse of GO in the matrix. The investigation of interfacial phenomenon by the theoretical interfacial models is important. Under the assumption of constant modulus and elastic deformation in the zero interface region, the predictions in this region are more unreliable when the calculations of experimental mechanical properties are analyzed in detail. In this study, PGDLLA/P(lLA-co-ɛ-CL)/PCL compounds were compared with the MSM approach to predict the plastic deformation in the stress–strain behavior. In contrast to the hypothesis that a simple look at the interphase area in nanocomposites, a finite element code is proposed to evaluate the efficiency of the interphase area. Both experimental results and FEM analysis showed that Young’s modulus increases by incorporating GO into GO/PGDLLA/P(lLA-co-ɛ-CL)/PCL nanocomposites; the amount of increase for incorporating 1 phr GO is about 61%.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Carbon Letters
Carbon Letters CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
7.30
自引率
20.00%
发文量
118
期刊介绍: Carbon Letters aims to be a comprehensive journal with complete coverage of carbon materials and carbon-rich molecules. These materials range from, but are not limited to, diamond and graphite through chars, semicokes, mesophase substances, carbon fibers, carbon nanotubes, graphenes, carbon blacks, activated carbons, pyrolytic carbons, glass-like carbons, etc. Papers on the secondary production of new carbon and composite materials from the above mentioned various carbons are within the scope of the journal. Papers on organic substances, including coals, will be considered only if the research has close relation to the resulting carbon materials. Carbon Letters also seeks to keep abreast of new developments in their specialist fields and to unite in finding alternative energy solutions to current issues such as the greenhouse effect and the depletion of the ozone layer. The renewable energy basics, energy storage and conversion, solar energy, wind energy, water energy, nuclear energy, biomass energy, hydrogen production technology, and other clean energy technologies are also within the scope of the journal. Carbon Letters invites original reports of fundamental research in all branches of the theory and practice of carbon science and technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信