原位合成氧化钒纳米线对合成碳基杂化纳米复合材料电性能的影响

IF 4.6 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
RSC Advances Pub Date : 2025-04-01 DOI:10.1039/D4RA07931K
H. Jeidi, W. Ahmed, I. Najeh, M. Erouel, H. L. Gomes, M. Chelly, G. Neri and L. El Mir
{"title":"原位合成氧化钒纳米线对合成碳基杂化纳米复合材料电性能的影响","authors":"H. Jeidi, W. Ahmed, I. Najeh, M. Erouel, H. L. Gomes, M. Chelly, G. Neri and L. El Mir","doi":"10.1039/D4RA07931K","DOIUrl":null,"url":null,"abstract":"<p >Organic–inorganic nanocomposites (RF/VOX) were prepared by sol–gel method coupled with pyrolysis treatment using a resorcinol–formaldehyde carbon matrix enriched with vanadium nanoparticles. The structural properties of the final product were characterised using X-ray diffraction, revealing the transformation of the incorporated vanadium oxide from the V<small><sub>2</sub></small>O<small><sub>5</sub></small> phase to V<small><sub>2</sub></small>O<small><sub>3</sub></small> due to the pyrolysis temperature in a reductive atmosphere, alongside the formation of vanadium carbide (V<small><sub>8</sub></small>C<small><sub>7</sub></small>) in the sample treated at 1000 °C. The X-ray analysis also indicated the presence of a graphite phase across all samples. Microscopic examinations showed macroporous carbon structures enriched with vanadium oxide in the form of nanowires. These structural features significantly influenced the materials' electrical properties. At low frequencies, the AC conductance indicated a thermally activated process in the RF/VOX-625 and RF/VOX-650 samples pyrolysed <em>y</em> at 625 °C and 650 °C, respectively. RF/VOX-625 displayed semiconductor behaviour at high frequencies, while RF/VOX-650 transited from semiconductor behaviour to metal one at 200 K. The changes in the exponent <em>s</em> suggested that the CBH model effectively describes the AC conduction mechanism. Impedance analysis highlighted a relaxation phenomenon, and Nyquist plots illustrated the contribution of grain and grain boundaries in RF/VOX-625 and RF/VOX-650 at low temperatures. Furthermore, these plots indicated that in RF/VOX-650, the grain effect became predominant beyond 200 K. Incorporating vanadium oxide nanoparticles into the polymer matrix resulted in distinct physical properties and behaviours compared to the original organic matrix, allowing this material to be tested in various applications including negatronic devices and electronic components.</p>","PeriodicalId":102,"journal":{"name":"RSC Advances","volume":" 13","pages":" 10022-10036"},"PeriodicalIF":4.6000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ra/d4ra07931k?page=search","citationCount":"0","resultStr":"{\"title\":\"Effect of the in situ synthesis of vanadium oxide nanowires on the electrical properties of hybrid nanocomposites based on synthetic carbon matrices\",\"authors\":\"H. Jeidi, W. Ahmed, I. Najeh, M. Erouel, H. L. Gomes, M. Chelly, G. Neri and L. El Mir\",\"doi\":\"10.1039/D4RA07931K\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Organic–inorganic nanocomposites (RF/VOX) were prepared by sol–gel method coupled with pyrolysis treatment using a resorcinol–formaldehyde carbon matrix enriched with vanadium nanoparticles. The structural properties of the final product were characterised using X-ray diffraction, revealing the transformation of the incorporated vanadium oxide from the V<small><sub>2</sub></small>O<small><sub>5</sub></small> phase to V<small><sub>2</sub></small>O<small><sub>3</sub></small> due to the pyrolysis temperature in a reductive atmosphere, alongside the formation of vanadium carbide (V<small><sub>8</sub></small>C<small><sub>7</sub></small>) in the sample treated at 1000 °C. The X-ray analysis also indicated the presence of a graphite phase across all samples. Microscopic examinations showed macroporous carbon structures enriched with vanadium oxide in the form of nanowires. These structural features significantly influenced the materials' electrical properties. At low frequencies, the AC conductance indicated a thermally activated process in the RF/VOX-625 and RF/VOX-650 samples pyrolysed <em>y</em> at 625 °C and 650 °C, respectively. RF/VOX-625 displayed semiconductor behaviour at high frequencies, while RF/VOX-650 transited from semiconductor behaviour to metal one at 200 K. The changes in the exponent <em>s</em> suggested that the CBH model effectively describes the AC conduction mechanism. Impedance analysis highlighted a relaxation phenomenon, and Nyquist plots illustrated the contribution of grain and grain boundaries in RF/VOX-625 and RF/VOX-650 at low temperatures. Furthermore, these plots indicated that in RF/VOX-650, the grain effect became predominant beyond 200 K. Incorporating vanadium oxide nanoparticles into the polymer matrix resulted in distinct physical properties and behaviours compared to the original organic matrix, allowing this material to be tested in various applications including negatronic devices and electronic components.</p>\",\"PeriodicalId\":102,\"journal\":{\"name\":\"RSC Advances\",\"volume\":\" 13\",\"pages\":\" 10022-10036\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/ra/d4ra07931k?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RSC Advances\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ra/d4ra07931k\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Advances","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ra/d4ra07931k","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

以富含钒纳米粒子的间苯二酚-甲醛碳为基体,采用溶胶-凝胶法制备了有机-无机复合材料(RF/VOX)。利用x射线衍射表征了最终产品的结构特性,揭示了由于还原气氛中热解温度的影响,加入的氧化钒从V2O5相转变为V2O3,同时在1000℃处理的样品中形成了碳化钒(V8C7)。x射线分析还表明,所有样品中都存在石墨相。显微检查显示大孔碳结构以纳米线的形式富含氧化钒。这些结构特征显著影响了材料的电学性能。在低频时,RF/VOX-625和RF/VOX-650样品的交流电导分别在625°C和650°C下热解,显示出热激活过程。RF/VOX-625在高频率下表现为半导体行为,而RF/VOX-650在200 K时从半导体行为过渡到金属行为。指数s的变化表明CBH模型有效地描述了交流传导机制。阻抗分析强调了弛豫现象,Nyquist图说明了低温下RF/VOX-625和RF/VOX-650中晶粒和晶界的贡献。此外,这些图表明,在RF/VOX-650中,晶粒效应在200 K以上成为主导。与原始的有机基质相比,将氧化钒纳米颗粒加入聚合物基质中产生了不同的物理特性和行为,允许这种材料在各种应用中进行测试,包括负电子器件和电子元件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Effect of the in situ synthesis of vanadium oxide nanowires on the electrical properties of hybrid nanocomposites based on synthetic carbon matrices

Effect of the in situ synthesis of vanadium oxide nanowires on the electrical properties of hybrid nanocomposites based on synthetic carbon matrices

Organic–inorganic nanocomposites (RF/VOX) were prepared by sol–gel method coupled with pyrolysis treatment using a resorcinol–formaldehyde carbon matrix enriched with vanadium nanoparticles. The structural properties of the final product were characterised using X-ray diffraction, revealing the transformation of the incorporated vanadium oxide from the V2O5 phase to V2O3 due to the pyrolysis temperature in a reductive atmosphere, alongside the formation of vanadium carbide (V8C7) in the sample treated at 1000 °C. The X-ray analysis also indicated the presence of a graphite phase across all samples. Microscopic examinations showed macroporous carbon structures enriched with vanadium oxide in the form of nanowires. These structural features significantly influenced the materials' electrical properties. At low frequencies, the AC conductance indicated a thermally activated process in the RF/VOX-625 and RF/VOX-650 samples pyrolysed y at 625 °C and 650 °C, respectively. RF/VOX-625 displayed semiconductor behaviour at high frequencies, while RF/VOX-650 transited from semiconductor behaviour to metal one at 200 K. The changes in the exponent s suggested that the CBH model effectively describes the AC conduction mechanism. Impedance analysis highlighted a relaxation phenomenon, and Nyquist plots illustrated the contribution of grain and grain boundaries in RF/VOX-625 and RF/VOX-650 at low temperatures. Furthermore, these plots indicated that in RF/VOX-650, the grain effect became predominant beyond 200 K. Incorporating vanadium oxide nanoparticles into the polymer matrix resulted in distinct physical properties and behaviours compared to the original organic matrix, allowing this material to be tested in various applications including negatronic devices and electronic components.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
RSC Advances
RSC Advances chemical sciences-
CiteScore
7.50
自引率
2.60%
发文量
3116
审稿时长
1.6 months
期刊介绍: An international, peer-reviewed journal covering all of the chemical sciences, including multidisciplinary and emerging areas. RSC Advances is a gold open access journal allowing researchers free access to research articles, and offering an affordable open access publishing option for authors around the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信